Silicon photonics for high-speed communications and photonic signal processing

Xuetong Zhou, Dan Yi, David W. U Chan, Hon Ki Tsang
{"title":"Silicon photonics for high-speed communications and photonic signal processing","authors":"Xuetong Zhou, Dan Yi, David W. U Chan, Hon Ki Tsang","doi":"10.1038/s44310-024-00024-7","DOIUrl":null,"url":null,"abstract":"Leveraging on the mature processing infrastructure of silicon microelectronics, silicon photonic integrated circuits may be readily scaled to large volume production for low-cost high-volume applications such as optical transceivers for data centers. Driven by the rapid growth of generative artificial intelligence and the resultant rapid increase in data traffic in data centers, new integrated optical transceivers will be needed to support multichannel high-capacity communications beyond 1.6Tb/s. In this paper, we review some of the recent advances in high performance optical waveguide grating couplers (WGC) as a key enabling technology for future high capacity communications. We describe the novel use of shifted-polysilicon overlay gratings on top of the silicon grating that enabled foundry manufactured chips to have fiber-chip coupling losses of under 1 dB. The use of mirror symmetry and resonant cavity enhancement in the design of gratings can increase the 1-dB optical bandwidths of grating couplers to over 100 nm. Multimode waveguide grating couplers (MWGC) may be designed for the selective launch of different modes channels in multimode fibers for mode-division-multiplexing (MDM) communications. The use of different modes or polarizations in optical fibers for high capacity communications requires the unscrambling of data lanes which are mixed together during the optical fiber transmission. We describe how silicon photonic circuits can be used to perform unitary matrix operations and unscramble the different data lanes in multichannel optical communication systems. We also describe recent advances on high-speed silicon modulators for enabling data rates of individual data lanes in an integrated optical transceiver beyond 300 Gb/s.","PeriodicalId":501711,"journal":{"name":"npj Nanophotonics","volume":" ","pages":"1-14"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44310-024-00024-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Nanophotonics","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44310-024-00024-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Leveraging on the mature processing infrastructure of silicon microelectronics, silicon photonic integrated circuits may be readily scaled to large volume production for low-cost high-volume applications such as optical transceivers for data centers. Driven by the rapid growth of generative artificial intelligence and the resultant rapid increase in data traffic in data centers, new integrated optical transceivers will be needed to support multichannel high-capacity communications beyond 1.6Tb/s. In this paper, we review some of the recent advances in high performance optical waveguide grating couplers (WGC) as a key enabling technology for future high capacity communications. We describe the novel use of shifted-polysilicon overlay gratings on top of the silicon grating that enabled foundry manufactured chips to have fiber-chip coupling losses of under 1 dB. The use of mirror symmetry and resonant cavity enhancement in the design of gratings can increase the 1-dB optical bandwidths of grating couplers to over 100 nm. Multimode waveguide grating couplers (MWGC) may be designed for the selective launch of different modes channels in multimode fibers for mode-division-multiplexing (MDM) communications. The use of different modes or polarizations in optical fibers for high capacity communications requires the unscrambling of data lanes which are mixed together during the optical fiber transmission. We describe how silicon photonic circuits can be used to perform unitary matrix operations and unscramble the different data lanes in multichannel optical communication systems. We also describe recent advances on high-speed silicon modulators for enabling data rates of individual data lanes in an integrated optical transceiver beyond 300 Gb/s.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高速通信和光子信号处理的硅光子学
利用硅微电子成熟的处理基础设施,硅光子集成电路可轻松实现大批量生产,用于数据中心光收发器等低成本大批量应用。在生成式人工智能快速发展以及数据中心数据流量随之快速增长的推动下,需要新型集成光收发器来支持超过 1.6Tb/s 的多通道大容量通信。在本文中,我们将回顾高性能光波导光栅耦合器(WGC)作为未来大容量通信关键使能技术的最新进展。我们介绍了在硅光栅顶部使用移位多晶硅叠层光栅的新方法,这种方法使代工厂制造的芯片的光纤-芯片耦合损耗低于 1 dB。在光栅设计中使用镜面对称和谐振腔增强技术,可将光栅耦合器的 1 分贝光带宽提高到 100 纳米以上。多模波导光栅耦合器(MWGC)可用于多模光纤中不同模式信道的选择性发射,以实现模分复用(MDM)通信。在光纤中使用不同模式或偏振进行大容量通信,需要对光纤传输过程中混合在一起的数据通道进行解扰。我们将介绍如何利用硅光子电路来执行单元矩阵运算,并对多通道光通信系统中的不同数据通道进行解扰。我们还介绍了高速硅调制器的最新进展,这些调制器可使集成光收发器中单个数据通道的数据传输速率超过 300 Gb/s。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
AlGaN/AlN heterostructures: an emerging platform for integrated photonics. Broadband cavity-enhanced Kerr Comb spectroscopy on Chip Perspectives of chiral nanophotonics: from mechanisms to biomedical applications Teleportation of a genuine single-rail vacuum-one-photon qubit generated via a quantum dot source Non-Hermitian selective thermal emitter for thermophotovoltaics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1