Development of a composite using calcined bone powder and silane cross-linked alginate as bone substitute material

IF 3.2 4区 医学 Q2 ENGINEERING, BIOMEDICAL Journal of biomedical materials research. Part B, Applied biomaterials Pub Date : 2024-07-19 DOI:10.1002/jbm.b.35457
Shigeo M. Tanaka
{"title":"Development of a composite using calcined bone powder and silane cross-linked alginate as bone substitute material","authors":"Shigeo M. Tanaka","doi":"10.1002/jbm.b.35457","DOIUrl":null,"url":null,"abstract":"<p>Calcined bone is an attractive natural material for use as a bone substitute because of its cost-effectiveness and high biocompatibility, which are comparable to that of synthetic hydroxyapatite. However, the calcination process has significantly weakened the mechanical properties. In this study, a composite of calcined bovine bone powder reinforced with silane cross-linked alginate was prepared to assess its biocompatibility, osteoconductivity, and mechanical compatibility as a bone substitute material. Culture studies with osteoblast-like cells (MC3T3-E1) showed no cytotoxicity toward the composite and exhibited general cell proliferative properties in its presence. In contrast, the composite reduced the alkaline phosphatase activity of osteoblasts but led to significant noncellular apatite deposition on the surface. In addition, quasi-static compression tests of the composite revealed mechanical properties comparable to those of human cancellous bone. The mechanical properties remained stable under wet conditions and did not deteriorate significantly even after 2 weeks of immersion in simulated body fluid at 37°C. The results show that this composite, composed of calcined bone powder and silane cross-linked alginate, is a promising bone substitute material with biocompatibility, osteoconductivity, and mechanical compatibility.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.b.35457","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part B, Applied biomaterials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35457","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Calcined bone is an attractive natural material for use as a bone substitute because of its cost-effectiveness and high biocompatibility, which are comparable to that of synthetic hydroxyapatite. However, the calcination process has significantly weakened the mechanical properties. In this study, a composite of calcined bovine bone powder reinforced with silane cross-linked alginate was prepared to assess its biocompatibility, osteoconductivity, and mechanical compatibility as a bone substitute material. Culture studies with osteoblast-like cells (MC3T3-E1) showed no cytotoxicity toward the composite and exhibited general cell proliferative properties in its presence. In contrast, the composite reduced the alkaline phosphatase activity of osteoblasts but led to significant noncellular apatite deposition on the surface. In addition, quasi-static compression tests of the composite revealed mechanical properties comparable to those of human cancellous bone. The mechanical properties remained stable under wet conditions and did not deteriorate significantly even after 2 weeks of immersion in simulated body fluid at 37°C. The results show that this composite, composed of calcined bone powder and silane cross-linked alginate, is a promising bone substitute material with biocompatibility, osteoconductivity, and mechanical compatibility.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用煅烧骨粉和硅烷交联藻酸盐作为骨替代材料,开发出一种复合材料。
煅烧骨是一种极具吸引力的天然材料,可用作骨替代品,因为它具有成本效益和较高的生物相容性,可与合成羟基磷灰石相媲美。然而,煅烧过程会大大削弱其机械性能。本研究制备了一种煅烧牛骨粉与硅烷交联海藻酸盐增强的复合材料,以评估其作为骨替代材料的生物相容性、骨传导性和机械相容性。对类成骨细胞(MC3T3-E1)的培养研究表明,该复合材料没有细胞毒性,并且在其存在下表现出一般的细胞增殖特性。相反,该复合材料降低了成骨细胞的碱性磷酸酶活性,但却导致表面出现大量非细胞磷灰石沉积。此外,复合材料的准静态压缩测试显示,其机械性能与人体松质骨相当。机械性能在潮湿条件下保持稳定,即使在 37°C 的模拟体液中浸泡 2 周后也没有明显退化。结果表明,这种由煅烧骨粉和硅烷交联海藻酸盐组成的复合材料是一种很有前途的骨替代材料,具有生物相容性、骨传导性和机械相容性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.50
自引率
2.90%
发文量
199
审稿时长
12 months
期刊介绍: Journal of Biomedical Materials Research – Part B: Applied Biomaterials is a highly interdisciplinary peer-reviewed journal serving the needs of biomaterials professionals who design, develop, produce and apply biomaterials and medical devices. It has the common focus of biomaterials applied to the human body and covers all disciplines where medical devices are used. Papers are published on biomaterials related to medical device development and manufacture, degradation in the body, nano- and biomimetic- biomaterials interactions, mechanics of biomaterials, implant retrieval and analysis, tissue-biomaterial surface interactions, wound healing, infection, drug delivery, standards and regulation of devices, animal and pre-clinical studies of biomaterials and medical devices, and tissue-biopolymer-material combination products. Manuscripts are published in one of six formats: • original research reports • short research and development reports • scientific reviews • current concepts articles • special reports • editorials Journal of Biomedical Materials Research – Part B: Applied Biomaterials is an official journal of the Society for Biomaterials, Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Manuscripts from all countries are invited but must be in English. Authors are not required to be members of the affiliated Societies, but members of these societies are encouraged to submit their work to the journal for consideration.
期刊最新文献
Accelerated In Vitro Oxidative Degradation Testing of Ultra-High Molecular Weight Polyethylene (UHMWPE) Issue Information Biocompatible and Safe Decellularized Spinach With Antibacterial and Wound Healing Activity In Vitro and In Vivo Biocompatibility of Bacterial Cellulose Molecular Biomarkers for In Vitro Thrombogenicity Assessment of Medical Device Materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1