AlphaFold-guided redesign of a plant pectin methylesterase inhibitor for broad-spectrum disease resistance.

IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Plant Pub Date : 2024-09-02 Epub Date: 2024-07-18 DOI:10.1016/j.molp.2024.07.008
Yeqiang Xia, Guangzheng Sun, Junhua Xiao, Xinyi He, Haibin Jiang, Zhichao Zhang, Qi Zhang, Kainan Li, Sicong Zhang, Xuechao Shi, Zhaoyun Wang, Lin Liu, Yao Zhao, Yuheng Yang, Kaixuan Duan, Wenwu Ye, Yiming Wang, Suomeng Dong, Yan Wang, Zhenchuan Ma, Yuanchao Wang
{"title":"AlphaFold-guided redesign of a plant pectin methylesterase inhibitor for broad-spectrum disease resistance.","authors":"Yeqiang Xia, Guangzheng Sun, Junhua Xiao, Xinyi He, Haibin Jiang, Zhichao Zhang, Qi Zhang, Kainan Li, Sicong Zhang, Xuechao Shi, Zhaoyun Wang, Lin Liu, Yao Zhao, Yuheng Yang, Kaixuan Duan, Wenwu Ye, Yiming Wang, Suomeng Dong, Yan Wang, Zhenchuan Ma, Yuanchao Wang","doi":"10.1016/j.molp.2024.07.008","DOIUrl":null,"url":null,"abstract":"<p><p>Plant cell walls are a critical site where plants and pathogens continuously struggle for physiological dominance. Here we show that dynamic remodeling of pectin methylesterification of plant cell walls is a component of the physiological and co-evolutionary struggles between hosts and pathogens. A pectin methylesterase (PsPME1) secreted by Phytophthora sojae decreases the degree of pectin methylesterification, thus synergizing with an endo-polygalacturonase (PsPG1) to weaken plant cell walls. To counter PsPME1-mediated susceptibility, a plant-derived pectin methylesterase inhibitor protein, GmPMI1, protects pectin to maintain a high methylesterification status. GmPMI1 protects plant cell walls from enzymatic degradation by inhibiting both soybean and P. sojae pectin methylesterases during infection. However, constitutive expression of GmPMI1 disrupted the trade-off between host growth and defense responses. We therefore used AlphaFold structure tools to design a modified form of GmPMI1 (GmPMI1R) that specifically targets and inhibits pectin methylesterases secreted from pathogens but not from plants. Transient expression of GmPMI1R enhanced plant resistance to oomycete and fungal pathogens. In summary, our work highlights the biochemical modification of the cell wall as an important focal point in the physiological and co-evolutionary conflict between hosts and microbes, providing an important proof of concept that AI-driven structure-based tools can accelerate the development of new strategies for plant protection.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"1344-1368"},"PeriodicalIF":17.1000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Plant","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molp.2024.07.008","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Plant cell walls are a critical site where plants and pathogens continuously struggle for physiological dominance. Here we show that dynamic remodeling of pectin methylesterification of plant cell walls is a component of the physiological and co-evolutionary struggles between hosts and pathogens. A pectin methylesterase (PsPME1) secreted by Phytophthora sojae decreases the degree of pectin methylesterification, thus synergizing with an endo-polygalacturonase (PsPG1) to weaken plant cell walls. To counter PsPME1-mediated susceptibility, a plant-derived pectin methylesterase inhibitor protein, GmPMI1, protects pectin to maintain a high methylesterification status. GmPMI1 protects plant cell walls from enzymatic degradation by inhibiting both soybean and P. sojae pectin methylesterases during infection. However, constitutive expression of GmPMI1 disrupted the trade-off between host growth and defense responses. We therefore used AlphaFold structure tools to design a modified form of GmPMI1 (GmPMI1R) that specifically targets and inhibits pectin methylesterases secreted from pathogens but not from plants. Transient expression of GmPMI1R enhanced plant resistance to oomycete and fungal pathogens. In summary, our work highlights the biochemical modification of the cell wall as an important focal point in the physiological and co-evolutionary conflict between hosts and microbes, providing an important proof of concept that AI-driven structure-based tools can accelerate the development of new strategies for plant protection.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
以 AlphaFold 为指导重新设计一种植物果胶甲基酯酶抑制剂,以实现广谱抗病性。
植物细胞壁是植物和病原体不断争夺生理主导地位的关键场所。在这里,我们展示了植物细胞壁果胶甲基化的动态重塑是宿主与病原体之间生理和共同进化斗争的一个组成部分。一种Phytophthora sojae分泌的果胶甲酯化酶(PsPME1)会降低果胶的甲酯化程度,从而与一种内聚半乳糖醛酸酶(PsPG1)协同削弱植物细胞壁。为了对抗 PsPME1 介导的易感性,一种源自植物的果胶甲基酯酶抑制蛋白 GmPMI1 可以保护果胶,使其保持较高的甲基酯化状态。在感染过程中,GmPMI1 可抑制大豆和 P. sojae 的果胶甲基酯酶,从而保护植物细胞壁免受酶降解。然而,GmPMI1 的组成型表达破坏了宿主生长和防御反应之间的平衡。因此,我们利用 AlphaFold 结构工具设计了一种改良形式的 GmPMI1(GmPMI1R),它能特异性地靶向并抑制病原体分泌的果胶甲基酯酶,而不抑制植物分泌的果胶甲基酯酶。GmPMI1R 的瞬时表达增强了植物对卵菌和真菌病原体的抗性。总之,我们的工作凸显了细胞壁的生化修饰是宿主与微生物之间生理和共同进化冲突的一个重要焦点,同时也是一个重要的概念验证,证明了人工智能驱动的基于结构的工具的快速发展可以加速植物保护新策略的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Plant
Molecular Plant 植物科学-生化与分子生物学
CiteScore
37.60
自引率
2.20%
发文量
1784
审稿时长
1 months
期刊介绍: Molecular Plant is dedicated to serving the plant science community by publishing novel and exciting findings with high significance in plant biology. The journal focuses broadly on cellular biology, physiology, biochemistry, molecular biology, genetics, development, plant-microbe interaction, genomics, bioinformatics, and molecular evolution. Molecular Plant publishes original research articles, reviews, Correspondence, and Spotlights on the most important developments in plant biology.
期刊最新文献
Cotton2035: From Genomics Research to Optimized Breeding. New molecular chaperone roles for CO2 assimilation in early land plants. NTRC mediates the coupling of chloroplast redox rhythm with nuclear circadian clock in plant cells. A wheat phytohormone atlas spanning major tissues across the entire life cycle provides novel insights into cytokinin and jasmonic acid interplay. Maize2035: A decadal vision for intelligent maize breeding.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1