A deep reinforcement learning-based intelligent QoS optimization algorithm for efficient routing in vehicular networks

IF 6.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY alexandria engineering journal Pub Date : 2024-07-20 DOI:10.1016/j.aej.2024.07.045
{"title":"A deep reinforcement learning-based intelligent QoS optimization algorithm for efficient routing in vehicular networks","authors":"","doi":"10.1016/j.aej.2024.07.045","DOIUrl":null,"url":null,"abstract":"<div><p>With the rapid development of Telematics, Vehicle Self-Organizing Networks (VANETs) play an increasingly critical role in Intelligent Transportation Systems (ITS). Especially in the environment without roadside assistance units (RSUs), how to effectively manage inter-vehicle communication and improve the stability and communication efficiency of the network has become a hot topic of current research. In this paper, a Deep Reinforcement Learning-based Intelligent QoS-optimized efficient routing algorithm for vehicular networks (DRLIQ) is proposed for VANETs with/without RSU environments, and routing methods are proposed respectively. Among them, in RSU-free environment, the DRLIQ algorithm utilizes the powerful processing capability of deep reinforcement learning to intelligently select the optimal data transmission path by dynamically learning and adapting to the changes in the vehicular network, thus effectively reducing communication interruptions and delays, and improving the accuracy of data transmission. The performance of the DRLIQ algorithm under different vehicle densities is evaluated in simulation experiments and compared with current popular algorithms. The experimental results show that the DRLIQ algorithm outperforms the comparison algorithms in reducing the number of communication interruptions, BER and network delay, especially in vehicle-dense environments. In addition, the DRLIQ algorithm shows higher adaptability and stability in coping with network topology changes and vehicle dynamics.</p></div>","PeriodicalId":7484,"journal":{"name":"alexandria engineering journal","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1110016824007671/pdfft?md5=41e31de698286db77838984f10103f3b&pid=1-s2.0-S1110016824007671-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"alexandria engineering journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110016824007671","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

With the rapid development of Telematics, Vehicle Self-Organizing Networks (VANETs) play an increasingly critical role in Intelligent Transportation Systems (ITS). Especially in the environment without roadside assistance units (RSUs), how to effectively manage inter-vehicle communication and improve the stability and communication efficiency of the network has become a hot topic of current research. In this paper, a Deep Reinforcement Learning-based Intelligent QoS-optimized efficient routing algorithm for vehicular networks (DRLIQ) is proposed for VANETs with/without RSU environments, and routing methods are proposed respectively. Among them, in RSU-free environment, the DRLIQ algorithm utilizes the powerful processing capability of deep reinforcement learning to intelligently select the optimal data transmission path by dynamically learning and adapting to the changes in the vehicular network, thus effectively reducing communication interruptions and delays, and improving the accuracy of data transmission. The performance of the DRLIQ algorithm under different vehicle densities is evaluated in simulation experiments and compared with current popular algorithms. The experimental results show that the DRLIQ algorithm outperforms the comparison algorithms in reducing the number of communication interruptions, BER and network delay, especially in vehicle-dense environments. In addition, the DRLIQ algorithm shows higher adaptability and stability in coping with network topology changes and vehicle dynamics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度强化学习的智能 QoS 优化算法,用于车载网络的高效路由选择
随着车联网技术的快速发展,车辆自组织网络(VANET)在智能交通系统(ITS)中发挥着越来越重要的作用。特别是在没有道路辅助装置(RSU)的环境下,如何有效管理车辆间通信,提高网络的稳定性和通信效率成为当前研究的热点。本文针对有/无 RSU 环境的 VANET,提出了基于深度强化学习的智能 QoS 优化高效车载网络路由算法(DRLIQ),并分别提出了路由方法。其中,在无RSU环境下,DRLIQ算法利用深度强化学习的强大处理能力,通过动态学习和适应车载网络的变化,智能选择最优数据传输路径,从而有效减少通信中断和延迟,提高数据传输的准确性。通过仿真实验评估了 DRLIQ 算法在不同车辆密度下的性能,并与当前流行的算法进行了比较。实验结果表明,DRLIQ 算法在减少通信中断次数、误码率和网络延迟方面优于对比算法,尤其是在车辆密集的环境中。此外,DRLIQ 算法在应对网络拓扑变化和车辆动态方面表现出更高的适应性和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
alexandria engineering journal
alexandria engineering journal Engineering-General Engineering
CiteScore
11.20
自引率
4.40%
发文量
1015
审稿时长
43 days
期刊介绍: Alexandria Engineering Journal is an international journal devoted to publishing high quality papers in the field of engineering and applied science. Alexandria Engineering Journal is cited in the Engineering Information Services (EIS) and the Chemical Abstracts (CA). The papers published in Alexandria Engineering Journal are grouped into five sections, according to the following classification: • Mechanical, Production, Marine and Textile Engineering • Electrical Engineering, Computer Science and Nuclear Engineering • Civil and Architecture Engineering • Chemical Engineering and Applied Sciences • Environmental Engineering
期刊最新文献
Safe operations of a reach stacker by computer vision in an automated container terminal Letter to editor: ICMAACS and history of its mathematical awards Parameter-based RNN micro-interface inversion model for wet friction components morphology A novel generalized nonlinear fractional grey Bernoulli model and its application State of charge estimation of lithium batteries in wide temperature range based on MSIABC-AEKF algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1