Stem-borne roots as a framework to study trans-organogenesis and uncover fundamental insights in developmental biology

IF 8.3 2区 生物学 Q1 PLANT SCIENCES Current opinion in plant biology Pub Date : 2024-07-20 DOI:10.1016/j.pbi.2024.102604
Amanda Rasmussen , Maria Laura Vidoz , Erin E. Sparks
{"title":"Stem-borne roots as a framework to study trans-organogenesis and uncover fundamental insights in developmental biology","authors":"Amanda Rasmussen ,&nbsp;Maria Laura Vidoz ,&nbsp;Erin E. Sparks","doi":"10.1016/j.pbi.2024.102604","DOIUrl":null,"url":null,"abstract":"<div><p>Plants have a remarkable ability to generate organs with a different identity to the parent organ, called ‘trans-organogenesis’. An example of trans-organogenesis is the formation of roots from stems (a type of adventitious root), which is the first type of root that arose during plant evolution. Despite being ancestral, stem-borne roots are often contextualised through lateral root research, implying that lateral roots precede adventitious roots. In this review we challenge that idea, highlight what is known about stem-borne root development across the plant kingdom, the remarkable diversity in form and function, and the many remaining evolutionary questions. Exploring stem-borne root evolutionary development can enhance our understanding of developmental decision making and the processes by which cells acquire their fates.</p></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"81 ","pages":"Article 102604"},"PeriodicalIF":8.3000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in plant biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369526624000955","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Plants have a remarkable ability to generate organs with a different identity to the parent organ, called ‘trans-organogenesis’. An example of trans-organogenesis is the formation of roots from stems (a type of adventitious root), which is the first type of root that arose during plant evolution. Despite being ancestral, stem-borne roots are often contextualised through lateral root research, implying that lateral roots precede adventitious roots. In this review we challenge that idea, highlight what is known about stem-borne root development across the plant kingdom, the remarkable diversity in form and function, and the many remaining evolutionary questions. Exploring stem-borne root evolutionary development can enhance our understanding of developmental decision making and the processes by which cells acquire their fates.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将茎生根作为研究跨器官发生的框架,揭示发育生物学的基本观点
植物有一种非凡的能力,可以生成与母体器官不同的器官,这种能力被称为 "转器官发生"。茎生根(一种不定根)就是跨器官发生的一个例子,它是植物进化过程中产生的第一种根。尽管茎生根是植物的祖先,但人们往往通过侧根研究来了解茎生根的来龙去脉,这意味着侧根先于不定根。在这篇综述中,我们将对这一观点提出质疑,重点介绍植物界茎生根发展的已知情况、形式和功能的显著多样性,以及许多遗留的进化问题。探索茎生根的进化发展可以加深我们对发育决策和细胞获得其命运的过程的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current opinion in plant biology
Current opinion in plant biology 生物-植物科学
CiteScore
16.30
自引率
3.20%
发文量
131
审稿时长
6-12 weeks
期刊介绍: Current Opinion in Plant Biology builds on Elsevier's reputation for excellence in scientific publishing and long-standing commitment to communicating high quality reproducible research. It is part of the Current Opinion and Research (CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy - of editorial excellence, high-impact, and global reach - to ensure they are a widely read resource that is integral to scientists' workflow.
期刊最新文献
Plant growth and development: Experimental diversity is essential for dissecting plant diversity. Detecting novel plant pathogen threats to food system security by integrating the Plant Reactome and remote sensing. Messenger and message: Uncovering the roles, rhythm and regulation of extracellular vesicles in plant biotic interactions. Chromatin dynamics and epigenetic regulation in plant development and environmental responses. Editorial overview: Spatial and temporal regulation of molecular and cell biological process across biological scales.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1