Effects of gravity, microgravity or microgravity simulation on early mouse embryogenesis: A review of the first two space embryo studies

{"title":"Effects of gravity, microgravity or microgravity simulation on early mouse embryogenesis: A review of the first two space embryo studies","authors":"","doi":"10.1016/j.mbm.2024.100081","DOIUrl":null,"url":null,"abstract":"<div><p>Many simulated micro-gravity (micro-G) experiments on earth suggest that micro-G conditions are not compatible with early mammalian embryo development. Recently, the first two “space embryo” studies have been published showing that early mouse embryo development can occur in real microgravity (real micro-G) conditions in orbit. In the first of these studies, published in 2020, Lei and collaborators developed automated mini-incubator (AMI) devices for mouse embryos facilitating cultivation, microscopic observation, and fixation<sup>1</sup>. Within these AMI apparatuses, 3400 non-frozen 2-cell embryos were launched in a recoverable satellite, experiencing sustained microgravity (∼0.001G) for 64 ​h post-orbit before fixation in space and recovery on earth. In a subsequent study, in 2023, Wakayama and colleagues<sup>2</sup> devised Embryo Thawing and Culturing (ETC) devices, enabling manual thawing, cultivation, and fixation of frozen 2-cell mouse embryos by a trained astronaut aboard the International Space Station (ISS). Within the ETCs, a total of 720 2-cell mouse embryos underwent thawing and cultivation for 4 days on the ISS, subject to either microgravity (n ​= ​360) and simulated-1G (n ​= ​360) conditions. The primary findings from both space embryo experiments indicate that mouse embryos can progress through embryogenesis from the 2-cell stage to the blastocyst stage under real micro-G conditions with few defects. Collectively, these studies propose the potential for mammalian reproduction under real micro-G conditions, challenging earlier simulated micro-G research suggesting otherwise.</p></div>","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949907024000445/pdfft?md5=7fac1cfeb0aa7e577b2502ddcad5ca49&pid=1-s2.0-S2949907024000445-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanobiology in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949907024000445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many simulated micro-gravity (micro-G) experiments on earth suggest that micro-G conditions are not compatible with early mammalian embryo development. Recently, the first two “space embryo” studies have been published showing that early mouse embryo development can occur in real microgravity (real micro-G) conditions in orbit. In the first of these studies, published in 2020, Lei and collaborators developed automated mini-incubator (AMI) devices for mouse embryos facilitating cultivation, microscopic observation, and fixation1. Within these AMI apparatuses, 3400 non-frozen 2-cell embryos were launched in a recoverable satellite, experiencing sustained microgravity (∼0.001G) for 64 ​h post-orbit before fixation in space and recovery on earth. In a subsequent study, in 2023, Wakayama and colleagues2 devised Embryo Thawing and Culturing (ETC) devices, enabling manual thawing, cultivation, and fixation of frozen 2-cell mouse embryos by a trained astronaut aboard the International Space Station (ISS). Within the ETCs, a total of 720 2-cell mouse embryos underwent thawing and cultivation for 4 days on the ISS, subject to either microgravity (n ​= ​360) and simulated-1G (n ​= ​360) conditions. The primary findings from both space embryo experiments indicate that mouse embryos can progress through embryogenesis from the 2-cell stage to the blastocyst stage under real micro-G conditions with few defects. Collectively, these studies propose the potential for mammalian reproduction under real micro-G conditions, challenging earlier simulated micro-G research suggesting otherwise.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
重力、微重力或微重力模拟对小鼠早期胚胎发育的影响:前两项太空胚胎研究综述
地球上的许多模拟微重力(micro-G)实验表明,微重力条件与哺乳动物早期胚胎发育不相容。最近,首次发表的两项 "太空胚胎 "研究表明,小鼠早期胚胎发育可以在轨道上的真实微重力(真实微重力)条件下进行。在 2020 年发表的第一项研究中,Lei 及其合作者为小鼠胚胎开发了自动微型培养箱(AMI)装置,以方便培养、显微观察和固定1。在这些AMI装置中,3400个未冷冻的2细胞胚胎被发射到一个可回收卫星中,在太空中固定和在地球上回收之前,在入轨后经历了64小时的持续微重力(∼0.001G)。在随后于 2023 年进行的一项研究中,Wakayama 及其同事2 设计了胚胎解冻和培养(ETC)装置,使训练有素的宇航员能够在国际空间站(ISS)上手动解冻、培养和固定冷冻的 2 细胞小鼠胚胎。在ETC中,共有720个2细胞小鼠胚胎在国际空间站上进行了为期4天的解冻和培养,分别在微重力(n = 360)和模拟1G(n = 360)条件下进行。这两项太空胚胎实验的主要结果表明,小鼠胚胎可以在真实的微重力条件下完成从 2 细胞阶段到囊胚阶段的胚胎发生过程,而且几乎没有缺陷。总之,这些研究提出了哺乳动物在真实微-G 条件下繁殖的可能性,对早先模拟微-G 条件下的研究提出了质疑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Strain and hyaluronic acid interact to regulate ovarian cancer cell proliferation, migration, and drug resistance In vivo analysis of hybrid hydrogels containing dual growth factor combinations, and skeletal stem cells under mechanical stimulation for bone repair Low-magnitude high-frequency vibration reduces prostate cancer growth and extravasation in vitro Application of biomechanics in tumor epigenetic research YAP/TAZ as mechanobiological signaling pathway in cardiovascular physiological regulation and pathogenesis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1