Osmium Transport and Enrichment From the Lithosphere to the Hydrosphere: New Perspectives From Hydrothermal Experiments and Geochemical Modeling

IF 3.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Journal of Geophysical Research: Solid Earth Pub Date : 2024-07-20 DOI:10.1029/2023JB028261
Haibo Yan, Xing Ding, Junfeng Liu, Xianglin Tu, Weidong Sun, I-Ming Chou
{"title":"Osmium Transport and Enrichment From the Lithosphere to the Hydrosphere: New Perspectives From Hydrothermal Experiments and Geochemical Modeling","authors":"Haibo Yan,&nbsp;Xing Ding,&nbsp;Junfeng Liu,&nbsp;Xianglin Tu,&nbsp;Weidong Sun,&nbsp;I-Ming Chou","doi":"10.1029/2023JB028261","DOIUrl":null,"url":null,"abstract":"<p>Metal complexation and speciation is the primary process responsible for metal transport and circulation in hydrothermal systems, during which stable and soluble metal complexes play a pivotal role. Here, we investigate the speciation of Os and the thermodynamic stability of Os(IV)-Cl complexes in chloride-bearing solutions at temperatures ranging from 150 to 600°C and pressure of 100 MPa through hydrolysis experiments. The results show that the dominant species of Os is OsCl<sub>6</sub><sup>2−</sup> at temperatures between 150 and 450°C and 100 MPa, gradually converting into Os(IV)-OH-Cl and Os(II)-Cl complexes over 450°C. The equilibrium constant (ln <i>K</i>) (<i>K</i> = [HCl]<sup>4</sup> ⨯ [Cl<sup>−</sup>]<sup>2</sup>/[OsCl<sub>6</sub><sup>2−</sup>]) between OsCl<sub>6</sub><sup>2−</sup> and water molecule is determined as ln <i>K</i> = (50.43 ± 4.633) − (54223 ± 2525.6)/<i>T</i>, and Δ<sub><i>r</i></sub><i>H</i><sub><i>m</i></sub><sup><i>Θ</i></sup> and Δ<sub><i>r</i></sub><i>S</i><sub><i>m</i></sub><sup><i>Θ</i></sup> are inferred to be (450.8 ± 21.00) kJ · mol<sup>−1</sup> and (419.3 ± 38.52) J · mol<sup>−1</sup> · K<sup>−1</sup>. Furthermore, the formation constant (ln <i>β</i>) of OsCl<sub>6</sub><sup>2−</sup> exhibits a change from −0.097 to −0.104 as temperatures increase from 150 to 400°C, while the change values in standard Gibbs free energy (Δ<sub><i>r</i></sub><i>G</i><sub><i>m</i></sub><sup><i>Θ</i></sup>) for the hydrolysis reactions decrease with rising temperature, suggesting a temperature-dependent thermodynamic stability of OsCl<sub>6</sub><sup>2−</sup>. Geochemical modeling further demonstrates that high solubility of OsCl<sub>6</sub><sup>2−</sup> could exist in low-temperature and acidic fluids (≤300°C and pH &lt; 5), or relatively high-temperature and acidic-neutral fluids (&gt;300°C and pH &lt; 7), primarily influenced by the Cl concentration. Acidic and near-neutral fluids with high Cl concentration venting in the mid-ocean ridge, back-arc, and sediment-hosted systems contribute more to dissolving and transporting Os from the lithosphere to the hydrosphere, thereby impacting the global ocean dissolved Os budget.</p>","PeriodicalId":15864,"journal":{"name":"Journal of Geophysical Research: Solid Earth","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023JB028261","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Metal complexation and speciation is the primary process responsible for metal transport and circulation in hydrothermal systems, during which stable and soluble metal complexes play a pivotal role. Here, we investigate the speciation of Os and the thermodynamic stability of Os(IV)-Cl complexes in chloride-bearing solutions at temperatures ranging from 150 to 600°C and pressure of 100 MPa through hydrolysis experiments. The results show that the dominant species of Os is OsCl62− at temperatures between 150 and 450°C and 100 MPa, gradually converting into Os(IV)-OH-Cl and Os(II)-Cl complexes over 450°C. The equilibrium constant (ln K) (K = [HCl]4 ⨯ [Cl]2/[OsCl62−]) between OsCl62− and water molecule is determined as ln K = (50.43 ± 4.633) − (54223 ± 2525.6)/T, and ΔrHmΘ and ΔrSmΘ are inferred to be (450.8 ± 21.00) kJ · mol−1 and (419.3 ± 38.52) J · mol−1 · K−1. Furthermore, the formation constant (ln β) of OsCl62− exhibits a change from −0.097 to −0.104 as temperatures increase from 150 to 400°C, while the change values in standard Gibbs free energy (ΔrGmΘ) for the hydrolysis reactions decrease with rising temperature, suggesting a temperature-dependent thermodynamic stability of OsCl62−. Geochemical modeling further demonstrates that high solubility of OsCl62− could exist in low-temperature and acidic fluids (≤300°C and pH < 5), or relatively high-temperature and acidic-neutral fluids (>300°C and pH < 7), primarily influenced by the Cl concentration. Acidic and near-neutral fluids with high Cl concentration venting in the mid-ocean ridge, back-arc, and sediment-hosted systems contribute more to dissolving and transporting Os from the lithosphere to the hydrosphere, thereby impacting the global ocean dissolved Os budget.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从岩石圈到水圈的锇迁移和富集:来自热液实验和地球化学建模的新视角
金属络合和分化是热液系统中金属迁移和循环的主要过程,在这一过程中,稳定的可溶性金属络合物起着关键作用。在此,我们通过水解实验研究了在温度为 150 至 600 摄氏度、压力为 100 兆帕的含氯溶液中,Os 的配位及 Os(IV)-Cl 复合物的热力学稳定性。结果表明,在 150 至 450 摄氏度和 100 兆帕的温度条件下,Os 的主要种类是 OsCl62-,超过 450 摄氏度后逐渐转化为 Os(IV)-OH-Cl 和 Os(II)-Cl 复合物。OsCl62- 与水分子之间的平衡常数(ln K)(K = [HCl]4 ⨯ [Cl-]2/[OsCl62-] )确定为 ln K = (50.43 ± 4.633) - (54223 ± 2525.6)/T, ΔrHmΘ 和 ΔrSmΘ 推断为 (450.8 ± 21.00) kJ - mol-1 和 (419.3 ± 38.52) J - mol-1 - K-1。此外,随着温度从 150°C 上升到 400°C,OsCl62- 的形成常数(ln β)从-0.097 变为-0.104,而水解反应的标准吉布斯自由能(ΔrGmΘ)的变化值则随着温度的升高而减小,这表明 OsCl62- 的热力学稳定性与温度有关。地球化学模型进一步证明,OsCl62-的高溶解度可能存在于低温酸性流体(≤300°C,pH值为5)或相对高温酸性中性流体(300°C,pH值为7)中,主要受Cl浓度的影响。在大洋中脊、弧后和沉积托管系统中喷出的高Cl浓度的酸性和近中性流体更有助于将岩石圈中的Os溶解和输送到水圈,从而影响全球海洋溶解Os预算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Geophysical Research: Solid Earth
Journal of Geophysical Research: Solid Earth Earth and Planetary Sciences-Geophysics
CiteScore
7.50
自引率
15.40%
发文量
559
期刊介绍: The Journal of Geophysical Research: Solid Earth serves as the premier publication for the breadth of solid Earth geophysics including (in alphabetical order): electromagnetic methods; exploration geophysics; geodesy and gravity; geodynamics, rheology, and plate kinematics; geomagnetism and paleomagnetism; hydrogeophysics; Instruments, techniques, and models; solid Earth interactions with the cryosphere, atmosphere, oceans, and climate; marine geology and geophysics; natural and anthropogenic hazards; near surface geophysics; petrology, geochemistry, and mineralogy; planet Earth physics and chemistry; rock mechanics and deformation; seismology; tectonophysics; and volcanology. JGR: Solid Earth has long distinguished itself as the venue for publication of Research Articles backed solidly by data and as well as presenting theoretical and numerical developments with broad applications. Research Articles published in JGR: Solid Earth have had long-term impacts in their fields. JGR: Solid Earth provides a venue for special issues and special themes based on conferences, workshops, and community initiatives. JGR: Solid Earth also publishes Commentaries on research and emerging trends in the field; these are commissioned by the editors, and suggestion are welcome.
期刊最新文献
Influences of the Stagnant Pacific Slab Beyond Its Westernmost Edge: Insights From the Cenozoic Alkaline Basalts in the Dariganga Volcanic Field, SE Mongolia The Distribution of Surface Heat Flow on the Tibetan Plateau Revealed by Data-Driven Methods Clay Minerals and Continental-Scale Remagnetization: A Case Study of South American Neoproterozoic Carbonates Sediment Corrections for Distributed Acoustic Sensing A Quantitative Comparison and Validation of Finite-Fault Models: The 2011 Tohoku-Oki Earthquake
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1