{"title":"A primer for junior trainees: Recognition of RNA modifications by RNA-binding proteins","authors":"Murphy Angelo, Yash Bhargava, Scott Takeo Aoki","doi":"10.1002/bmb.21854","DOIUrl":null,"url":null,"abstract":"<p>The complexity of RNA cannot be fully expressed with the canonical A, C, G, and U alphabet. To date, over 170 distinct chemical modifications to RNA have been discovered in living systems. RNA modifications can profoundly impact the cellular outcomes of messenger RNAs (mRNAs), transfer and ribosomal RNAs, and noncoding RNAs. Additionally, aberrant RNA modifications are associated with human disease. RNA modifications are a rising topic within the fields of biochemistry and molecular biology. The role of RNA modifications in gene regulation, disease pathogenesis, and therapeutic applications increasingly captures the attention of the scientific community. This review aims to provide undergraduates, junior trainees, and educators with an appreciation for the significance of RNA modifications in eukaryotic organisms, alongside the skills required to identify and analyze fundamental RNA–protein interactions. The pumilio RNA-binding protein and YT521-B homology (YTH) family of modified RNA-binding proteins serve as examples to highlight the fundamental biochemical interactions that underlie the specific recognition of both unmodified and modified ribonucleotides, respectively. By instilling these foundational, textbook concepts through practical examples, this review contributes an analytical toolkit that facilitates engagement with RNA modifications research at large.</p>","PeriodicalId":8830,"journal":{"name":"Biochemistry and Molecular Biology Education","volume":"52 6","pages":"701-710"},"PeriodicalIF":1.2000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11568953/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and Molecular Biology Education","FirstCategoryId":"95","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bmb.21854","RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The complexity of RNA cannot be fully expressed with the canonical A, C, G, and U alphabet. To date, over 170 distinct chemical modifications to RNA have been discovered in living systems. RNA modifications can profoundly impact the cellular outcomes of messenger RNAs (mRNAs), transfer and ribosomal RNAs, and noncoding RNAs. Additionally, aberrant RNA modifications are associated with human disease. RNA modifications are a rising topic within the fields of biochemistry and molecular biology. The role of RNA modifications in gene regulation, disease pathogenesis, and therapeutic applications increasingly captures the attention of the scientific community. This review aims to provide undergraduates, junior trainees, and educators with an appreciation for the significance of RNA modifications in eukaryotic organisms, alongside the skills required to identify and analyze fundamental RNA–protein interactions. The pumilio RNA-binding protein and YT521-B homology (YTH) family of modified RNA-binding proteins serve as examples to highlight the fundamental biochemical interactions that underlie the specific recognition of both unmodified and modified ribonucleotides, respectively. By instilling these foundational, textbook concepts through practical examples, this review contributes an analytical toolkit that facilitates engagement with RNA modifications research at large.
期刊介绍:
The aim of BAMBED is to enhance teacher preparation and student learning in Biochemistry, Molecular Biology, and related sciences such as Biophysics and Cell Biology, by promoting the world-wide dissemination of educational materials. BAMBED seeks and communicates articles on many topics, including:
Innovative techniques in teaching and learning.
New pedagogical approaches.
Research in biochemistry and molecular biology education.
Reviews on emerging areas of Biochemistry and Molecular Biology to provide background for the preparation of lectures, seminars, student presentations, dissertations, etc.
Historical Reviews describing "Paths to Discovery".
Novel and proven laboratory experiments that have both skill-building and discovery-based characteristics.
Reviews of relevant textbooks, software, and websites.
Descriptions of software for educational use.
Descriptions of multimedia materials such as tutorials on various aspects of biochemistry and molecular biology.