{"title":"Comprehensive evaluation of urban river ecological bank protection based on AHP-TOPSIS method.","authors":"Shutian Li, Liu Yang, Jianyin Fang","doi":"10.1080/09593330.2024.2380395","DOIUrl":null,"url":null,"abstract":"<p><p>An ecological revetment is a new type that combines natural vegetation with civil engineering technology to establish functions, such as flood control, drainage, ecology, and landscape. Various types of ecological and other bank protection lead to different bank protection effects. Urban river ecological bank protection can effectively prevent bank collapse and promote mutual infiltration between river water and soil and is important for maintaining the balance of the river ecosystem and enhancing the ecological service function of river bank protection. To scientifically and accurately evaluate the ecological protection of riverbanks, this study screened 16 evaluation indicators based on four aspects: structural stability, ecological functionality, landscape suitability, and socio-economic status. A comprehensive evaluation index system for urban river ecological protection was constructed and an urban river ecological protection evaluation model based on the AHP - TOPSIS method was established. The model was used to evaluate the ecological protection of the rivers in the study area. The results revealed that the evaluation value, 0.830, of the self-embedded retaining wall exhibited the best performance among the current slope protection types. In addition, structural stability is a crucial factor in river ecological revetments, and the evaluation results were consistent with the revetment type selected in actual engineering. Therefore, the evaluation system constructed in this study is reasonable and reliable and has strong generalizability. This study provides theoretical guidance for selecting ecological protection banks for future river management projects and has specific references important for academic research and the development of environmental protection banks.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":" ","pages":"1201-1214"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/09593330.2024.2380395","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
An ecological revetment is a new type that combines natural vegetation with civil engineering technology to establish functions, such as flood control, drainage, ecology, and landscape. Various types of ecological and other bank protection lead to different bank protection effects. Urban river ecological bank protection can effectively prevent bank collapse and promote mutual infiltration between river water and soil and is important for maintaining the balance of the river ecosystem and enhancing the ecological service function of river bank protection. To scientifically and accurately evaluate the ecological protection of riverbanks, this study screened 16 evaluation indicators based on four aspects: structural stability, ecological functionality, landscape suitability, and socio-economic status. A comprehensive evaluation index system for urban river ecological protection was constructed and an urban river ecological protection evaluation model based on the AHP - TOPSIS method was established. The model was used to evaluate the ecological protection of the rivers in the study area. The results revealed that the evaluation value, 0.830, of the self-embedded retaining wall exhibited the best performance among the current slope protection types. In addition, structural stability is a crucial factor in river ecological revetments, and the evaluation results were consistent with the revetment type selected in actual engineering. Therefore, the evaluation system constructed in this study is reasonable and reliable and has strong generalizability. This study provides theoretical guidance for selecting ecological protection banks for future river management projects and has specific references important for academic research and the development of environmental protection banks.
期刊介绍:
Environmental Technology is a leading journal for the rapid publication of science and technology papers on a wide range of topics in applied environmental studies, from environmental engineering to environmental biotechnology, the circular economy, municipal and industrial wastewater management, drinking-water treatment, air- and water-pollution control, solid-waste management, industrial hygiene and associated technologies.
Environmental Technology is intended to provide rapid publication of new developments in environmental technology. The journal has an international readership with a broad scientific base. Contributions will be accepted from scientists and engineers in industry, government and universities. Accepted manuscripts are generally published within four months.
Please note that Environmental Technology does not publish any review papers unless for a specified special issue which is decided by the Editor. Please do submit your review papers to our sister journal Environmental Technology Reviews at http://www.tandfonline.com/toc/tetr20/current