Catalytic conversion of triglycerides to biodiesel using ZnO/SnTiO4/SBA-15 nanostructures

IF 4.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Chemistry and Physics Pub Date : 2024-07-18 DOI:10.1016/j.matchemphys.2024.129694
{"title":"Catalytic conversion of triglycerides to biodiesel using ZnO/SnTiO4/SBA-15 nanostructures","authors":"","doi":"10.1016/j.matchemphys.2024.129694","DOIUrl":null,"url":null,"abstract":"<div><p>The imperative for the present era revolves around the development of sustainable energy resources, driven by the depletion of conventional energy sources and the escalating global energy demand. Concurrently, the combustion of fossil fuels releases detrimental pollutants, including carbon oxides, sulfur compounds, nitrogen oxides, and particulate matter, contributing to atmospheric pollution. Biodiesel, as an alternative fuel, offers numerous advantages compared to fossil fuels, including renewability and reduced emission of atmospheric pollutants. In this study, we explore the application of ZnO/SnTiO<sub>4</sub>/SBA-15 nanostructure as a nanocatalyst for the biodiesel formation, aiming to enhance reaction efficiency and product quality. The investigation begins with the preparation and analyzation of ZnO/SnTiO<sub>4</sub>/SBA-15 nanostructure, which demonstrate a high surface area (534 m<sup>2</sup>/g), mesoporous surface (pore size 3.54 cm<sup>3</sup>g<sup>-1</sup>) and unique catalytic properties. The results designated that 99 % biofuel formation was attained in 5 h, and 65 °C temperature. The results show that ZnO/SnTiO<sub>4</sub>/SBA-15 exhibit remarkable catalytic activity, effectively promoting the transformation of triglycerides into biodiesel with reduced reaction times and minimal byproducts. Furthermore, this research evaluates the influence of reaction parameters, i.e. temperature, methanol and oil ratio, and catalyst loading, on the biofuel formation and quality. Optimization studies reveal that 65 °C temperature, 30 mg catalyst and 5 h reaction times are the suitable conditions for the production of high yield biodiesel while minimizing resource consumption. The findings of this study highlight the significance of ZnO/SnTiO<sub>4</sub>/SBA-15 nanostructure as a catalyst in the transesterification process, emphasizing their potential to revolutionize biodiesel production by offering a more efficient, environmentally responsible, and economically viable approach.</p></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry and Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254058424008198","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The imperative for the present era revolves around the development of sustainable energy resources, driven by the depletion of conventional energy sources and the escalating global energy demand. Concurrently, the combustion of fossil fuels releases detrimental pollutants, including carbon oxides, sulfur compounds, nitrogen oxides, and particulate matter, contributing to atmospheric pollution. Biodiesel, as an alternative fuel, offers numerous advantages compared to fossil fuels, including renewability and reduced emission of atmospheric pollutants. In this study, we explore the application of ZnO/SnTiO4/SBA-15 nanostructure as a nanocatalyst for the biodiesel formation, aiming to enhance reaction efficiency and product quality. The investigation begins with the preparation and analyzation of ZnO/SnTiO4/SBA-15 nanostructure, which demonstrate a high surface area (534 m2/g), mesoporous surface (pore size 3.54 cm3g-1) and unique catalytic properties. The results designated that 99 % biofuel formation was attained in 5 h, and 65 °C temperature. The results show that ZnO/SnTiO4/SBA-15 exhibit remarkable catalytic activity, effectively promoting the transformation of triglycerides into biodiesel with reduced reaction times and minimal byproducts. Furthermore, this research evaluates the influence of reaction parameters, i.e. temperature, methanol and oil ratio, and catalyst loading, on the biofuel formation and quality. Optimization studies reveal that 65 °C temperature, 30 mg catalyst and 5 h reaction times are the suitable conditions for the production of high yield biodiesel while minimizing resource consumption. The findings of this study highlight the significance of ZnO/SnTiO4/SBA-15 nanostructure as a catalyst in the transesterification process, emphasizing their potential to revolutionize biodiesel production by offering a more efficient, environmentally responsible, and economically viable approach.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用 ZnO/SnTiO4/SBA-15 纳米结构催化甘油三酯转化为生物柴油
在传统能源枯竭和全球能源需求不断攀升的推动下,当今时代的当务之急是开发可持续能源。同时,化石燃料燃烧会释放有害污染物,包括碳氧化物、硫化合物、氮氧化物和颗粒物,造成大气污染。生物柴油作为一种替代燃料,与化石燃料相比具有许多优势,包括可再生性和减少大气污染物的排放。在本研究中,我们探索了 ZnO/SnTiO4/SBA-15 纳米结构作为纳米催化剂在生物柴油形成过程中的应用,旨在提高反应效率和产品质量。研究从制备和分析 ZnO/SnTiO4/SBA-15 纳米结构开始,该结构具有高比表面积(534 m2/g)、介孔表面(孔径 3.54 cm3g-1)和独特的催化特性。研究结果表明,在 65 °C 的温度下,5 小时内生物燃料的形成率达到 99%。结果表明,ZnO/SnTiO4/SBA-15 具有显著的催化活性,可有效促进甘油三酯向生物柴油的转化,同时缩短反应时间并减少副产物。此外,本研究还评估了反应参数(即温度、甲醇和油的比例以及催化剂负载量)对生物燃料形成和质量的影响。优化研究表明,65 °C 的温度、30 毫克催化剂和 5 小时的反应时间是生产高产生物柴油的合适条件,同时还能最大限度地减少资源消耗。本研究的结果凸显了 ZnO/SnTiO4/SBA-15 纳米结构作为酯交换过程催化剂的重要意义,强调了其通过提供一种更高效、对环境更负责、经济上更可行的方法彻底改变生物柴油生产的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Chemistry and Physics
Materials Chemistry and Physics 工程技术-材料科学:综合
CiteScore
8.70
自引率
4.30%
发文量
1515
审稿时长
69 days
期刊介绍: Materials Chemistry and Physics is devoted to short communications, full-length research papers and feature articles on interrelationships among structure, properties, processing and performance of materials. The Editors welcome manuscripts on thin films, surface and interface science, materials degradation and reliability, metallurgy, semiconductors and optoelectronic materials, fine ceramics, magnetics, superconductors, specialty polymers, nano-materials and composite materials.
期刊最新文献
An approach to fabricate nanomaterials using a closed low-temperature growth system Nanostructured MnMoO4 as a trifunctional electrocatalyst for overall water splitting and CO2 reduction Shear mechanical properties of AISI 316L stainless steel processed by unidirectional/cross rolling and annealing treatment Microwave reflective properties of amorphous nanogranular composites (CoTaNb)x(MgO)1-x Effects of YH2 dopant on densification behavior, microstructure and mechanical properties of Ti–6Al–4V alloys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1