The pursuit of advanced materials for enhancing optoelectronic device performance has led to significant interest in core-shell structures, which combine the unique properties of different materials to achieve superior functionality. This study investigates the hydrothermal synthesis of a series of core-shell Carbon@MoS2 materials with varying carbon concentrations, aiming to identify the optimal carbon content for enhanced optoelectronic applications. XRD analysis revealed the formation of new crystallographic phases, with crystallite sizes ranging from 1.39 nm to 23.1 nm, indicating significant structural modifications. UV–Vis analysis highlighted an expanded light absorption range and a reduction in bandgap up to 0.92 eV, particularly in carbon-loaded samples. Morphological analysis by FESEM and HRTEM confirmed the successful formation of core-shell nanospheres with well-defined MoS2 layers enveloping carbon cores. Electrochemical studies, including CV and PEIS, demonstrated that the sample CM4, with an optimal carbon concentration, exhibited balanced redox behavior, lower charge transfer resistance of 2860 Ω, and pronounced Warburg diffusion, marking it as the most effective composition for improving optoelectronic performance in future.
{"title":"Synergistic effects of Carbon@MoS2 core-shell nanostructures on charge dynamics for future optoelectronic applications","authors":"Shreya, Soumya Rai, Peeyush Phogat, Ranjana Jha, Sukhvir Singh","doi":"10.1016/j.matchemphys.2024.130147","DOIUrl":"10.1016/j.matchemphys.2024.130147","url":null,"abstract":"<div><div>The pursuit of advanced materials for enhancing optoelectronic device performance has led to significant interest in core-shell structures, which combine the unique properties of different materials to achieve superior functionality. This study investigates the hydrothermal synthesis of a series of core-shell Carbon@MoS<sub>2</sub> materials with varying carbon concentrations, aiming to identify the optimal carbon content for enhanced optoelectronic applications. XRD analysis revealed the formation of new crystallographic phases, with crystallite sizes ranging from 1.39 nm to 23.1 nm, indicating significant structural modifications. UV–Vis analysis highlighted an expanded light absorption range and a reduction in bandgap up to 0.92 eV, particularly in carbon-loaded samples. Morphological analysis by FESEM and HRTEM confirmed the successful formation of core-shell nanospheres with well-defined MoS<sub>2</sub> layers enveloping carbon cores. Electrochemical studies, including CV and PEIS, demonstrated that the sample CM4, with an optimal carbon concentration, exhibited balanced redox behavior, lower charge transfer resistance of 2860 Ω, and pronounced Warburg diffusion, marking it as the most effective composition for improving optoelectronic performance in future.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"329 ","pages":"Article 130147"},"PeriodicalIF":4.3,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142663138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-15DOI: 10.1016/j.matchemphys.2024.130145
Xuankai Zhao, Zhejie Ma, Xueru Li, Yujie Guo, Ping Li
A series of PtCu3@Pt/C catalysts with core@shell structure applicable to oxygen reduction reaction (ORR) were successfully synthesized by combining wet chemistry method for supported PtCu3/C preparation and atomic layer deposition (ALD) technique for Pt-shell covering PtCu3 nanoparticles. The oxygen adsorption energy on the surface of model PtCu3@Pt(111) based on density functional theory calculation revealed that the optimal oxygen adsorption strength suitable for ORR appears on the PtCu3@Pt(111) having few layers of Pt-shell. For this purpose, the Pt-shell thickness was precisely adjusted by varying the number of ALD cycles between 1 and 6, and four ALD cycles were found to deposit approximately one layer of Pt atoms on the surface of PtCu3 nanoparticles. In-depth investigation through material characterization verified the formation of PtCu3 alloy and the adjustability of Pt-shell thickness. Strain effect and electronic effects were observed between the PtCu3 core and Pt-shell, manifested as lattice compression of the Pt-shell and electron transfer from Pt band to Cu, both of which can downshift d-band center of the Pt-shell thus weakening the adsorption of oxygen species. The electrocatalytic performance of various PtCu3@PtALD-n/C (n = 1–6) catalysts was tested in the ORR process using rotating disk electrode approach. PtCu3@PtALD-4/C exhibited the maximum mass and specific activity among all catalysts, being 3.2 and 2.6 times higher than a commercial Pt/C catalyst, and much better as well than the PtCu3/C without Pt-shell. The durability of the PtCu3@PtALD-4/C catalyst was also superior to that of the PtCu3/C and Pt/C catalysts.
{"title":"Optimization of atomic layer deposited Pt-shell thickness of PtCu3@Pt/C catalyst for oxygen reduction reaction","authors":"Xuankai Zhao, Zhejie Ma, Xueru Li, Yujie Guo, Ping Li","doi":"10.1016/j.matchemphys.2024.130145","DOIUrl":"10.1016/j.matchemphys.2024.130145","url":null,"abstract":"<div><div>A series of PtCu<sub>3</sub>@Pt/C catalysts with core@shell structure applicable to oxygen reduction reaction (ORR) were successfully synthesized by combining wet chemistry method for supported PtCu<sub>3</sub>/C preparation and atomic layer deposition (ALD) technique for Pt-shell covering PtCu<sub>3</sub> nanoparticles. The oxygen adsorption energy on the surface of model PtCu<sub>3</sub>@Pt(111) based on density functional theory calculation revealed that the optimal oxygen adsorption strength suitable for ORR appears on the PtCu<sub>3</sub>@Pt(111) having few layers of Pt-shell. For this purpose, the Pt-shell thickness was precisely adjusted by varying the number of ALD cycles between 1 and 6, and four ALD cycles were found to deposit approximately one layer of Pt atoms on the surface of PtCu<sub>3</sub> nanoparticles. In-depth investigation through material characterization verified the formation of PtCu<sub>3</sub> alloy and the adjustability of Pt-shell thickness. Strain effect and electronic effects were observed between the PtCu<sub>3</sub> core and Pt-shell, manifested as lattice compression of the Pt-shell and electron transfer from Pt band to Cu, both of which can downshift d-band center of the Pt-shell thus weakening the adsorption of oxygen species. The electrocatalytic performance of various PtCu<sub>3</sub>@Pt<sub>ALD-n</sub>/C (n = 1–6) catalysts was tested in the ORR process using rotating disk electrode approach. PtCu<sub>3</sub>@Pt<sub>ALD-4</sub>/C exhibited the maximum mass and specific activity among all catalysts, being 3.2 and 2.6 times higher than a commercial Pt/C catalyst, and much better as well than the PtCu<sub>3</sub>/C without Pt-shell. The durability of the PtCu<sub>3</sub>@Pt<sub>ALD-4</sub>/C catalyst was also superior to that of the PtCu<sub>3</sub>/C and Pt/C catalysts.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"329 ","pages":"Article 130145"},"PeriodicalIF":4.3,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142663139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The stimuli-responsive, low molecular weight, dynamically tunable photophysical features have long been an important objective that challenges chemists in synthesizing liquid crystal (LC) compounds. Herein, the effect of core fluorination on the mesomorphic behavior of fan-like azobenzene derivatives was reported. Two new series of azobenzene derivatives which differ from each other in the length of the terminal alkoxy side chain as well as fluorine (-F) group substitution on the azobenzene moiety were synthesized (3a-3c, 4a-4c) and molecular structures of the compounds were confirmed using various analytical techniques. Absorption spectra of the LC compounds 3b and 3c are characterized by ππ∗ transitions around 350–410 nm. The self-assembly of these LC compounds was investigated using polarized optical microscope (POM) and differential scanning colorimetry (DSC). The trans-to-cis photoisomerization of the LC compounds 3b and 3c occurs in these absorption bands. The trans-to-cis photoisomerization of LC compounds 3b and 3c showed 4 h and 24.5 h whereas, thermal cis-to-trans isomerization rates were found to be 90s and 100s resulting in tuning of mesophases. Room temperature photoluminescence (RTPL) of LC compounds 3b and 3c when excited at 220 nm, 230 nm and 240 nm showed several sharp/weak emission intensity bands. Both the LC compounds (3b, 3c) showed sharp blue emission bands and yellow/green/orange colored bands correspond to weak emission spectra when excited at 220 nm. Further, steady state photoluminescence (SSPL) spectra of these both LC compounds revealed sharp near edge emission bands and broad violet emission peaks with higher Stoke's shift as well as full width half maximum (FWHM). Fluorescence lifetime decay (FLD) studies of compound 3 b unveiled an average lifetime (τ) shuttle between 17.24 ns and 103.60 ns at various excitation wavelengths. However, FLD of LC compound 3c unveiled that the τ fluctuates between 27.00 ns and 102.56 ns at various excitation wavelengths. Quantum yield (QY) decreases for both the LC compounds with an increase in excitation wavelengths. The study proved the importance of the alkoxy side chain at one end of the aromatic ring and core fluorination as a significant tool to modify the LC behavior of azobenzene derivatives. Thus, synthesized azobenzene derivatives are potentially useful for developing permanent optical storage and display devices.
{"title":"Influence of core fluorination on the phase properties of fan-like azobenzene based supramolecules, their cis-trans photoisomerization and photoluminescence dynamics","authors":"Vinayak Adimule , Kalpana Sharma , Vandna Sharma , Pankaj Kumar , Rangappa Keri , Rajeev Joshi , Santosh Nandi","doi":"10.1016/j.matchemphys.2024.130140","DOIUrl":"10.1016/j.matchemphys.2024.130140","url":null,"abstract":"<div><div>The stimuli-responsive, low molecular weight, dynamically tunable photophysical features have long been an important objective that challenges chemists in synthesizing liquid crystal (LC) compounds. Herein, the effect of core fluorination on the mesomorphic behavior of fan-like azobenzene derivatives was reported. Two new series of azobenzene derivatives which differ from each other in the length of the terminal alkoxy side chain as well as fluorine (-F) group substitution on the azobenzene moiety were synthesized <strong>(3a-3c, 4a-4c)</strong> and molecular structures of the compounds were confirmed using various analytical techniques. Absorption spectra of the LC compounds <strong>3b</strong> and <strong>3c</strong> are characterized by ππ∗ transitions around 350–410 nm. The self-assembly of these LC compounds was investigated using polarized optical microscope (POM) and differential scanning colorimetry (DSC). The <em>trans</em>-to-<em>cis</em> photoisomerization of the LC compounds <strong>3b</strong> and <strong>3c</strong> occurs in these absorption bands. The <em>trans</em>-to-<em>cis</em> photoisomerization of LC compounds <strong>3b</strong> and <strong>3c</strong> showed 4 h and 24.5 h whereas, thermal <em>cis</em>-to-<em>trans</em> isomerization rates were found to be 90s and 100s resulting in tuning of mesophases. Room temperature photoluminescence (RTPL) of LC compounds <strong>3b</strong> and <strong>3c</strong> when excited at 220 nm, 230 nm and 240 nm showed several sharp/weak emission intensity bands. Both the LC compounds (<strong>3b, 3c</strong>) showed sharp blue emission bands and yellow/green/orange colored bands correspond to weak emission spectra when excited at 220 nm. Further, steady state photoluminescence (SSPL) spectra of these both LC compounds revealed sharp near edge emission bands and broad violet emission peaks with higher Stoke's shift as well as full width half maximum (FWHM). Fluorescence lifetime decay (FLD) studies of compound 3 b unveiled an average lifetime (τ) shuttle between 17.24 ns and 103.60 ns at various excitation wavelengths. However, FLD of LC compound <strong>3c</strong> unveiled that the τ fluctuates between 27.00 ns and 102.56 ns at various excitation wavelengths. Quantum yield (QY) decreases for both the LC compounds with an increase in excitation wavelengths. The study proved the importance of the alkoxy side chain at one end of the aromatic ring and core fluorination as a significant tool to modify the LC behavior of azobenzene derivatives. Thus, synthesized azobenzene derivatives are potentially useful for developing permanent optical storage and display devices.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"329 ","pages":"Article 130140"},"PeriodicalIF":4.3,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142663136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-10DOI: 10.1016/j.matchemphys.2024.130139
Natalia Anna Wójcik , Abbas Saeed Hakeem , Zuzanna Mielke , Sharafat Ali
This study aimed to investigate the influence of Na2O addition on the structural, thermal, and electrical characteristics of oxynitride glass-ceramics within the Na–K–Mg–Ca–Al–Si–O–N system. Oxynitride glass-ceramic samples were prepared via spark plasma sintering (SPS) with sodium oxide doping levels ranging from 0 wt% to 12 wt%. FESEM analysis revealed changes in sample morphology with increasing sodium content, indicating the formation of granular structures and sodium-rich clusters in the glass matrix. XRD revealed the presence of nanocrystalline phases in doped samples, primarily (Na,Ca)(Si,Al)4O8. IR spectroscopy demonstrated changes in the glass network structure due to sodium, affecting both silicate and aluminum units. Increasing sodium content led to higher crystallinity and a corresponding decrease in sample density. The thermal expansion increased notably with sodium content, attributed to the disruptive effect of sodium ions on the glass-ceramics structure, while thermal conductivity decreased also attributed to this disruption. AC conductivity increased significantly with sodium, indicating enhanced ionic conductivity, while DC conductivity was observed in doped samples at higher temperatures, with activation energies consistent with ionic conduction mechanisms. The exponent-dependent (s) parameter decreased with higher sodium content, suggesting limited ion diffusion.
{"title":"Investigation of structural, thermal, and electrical properties of sodium-doped oxynitride glass-ceramics","authors":"Natalia Anna Wójcik , Abbas Saeed Hakeem , Zuzanna Mielke , Sharafat Ali","doi":"10.1016/j.matchemphys.2024.130139","DOIUrl":"10.1016/j.matchemphys.2024.130139","url":null,"abstract":"<div><div>This study aimed to investigate the influence of Na<sub>2</sub>O addition on the structural, thermal, and electrical characteristics of oxynitride glass-ceramics within the Na–K–Mg–Ca–Al–Si–O–N system. Oxynitride glass-ceramic samples were prepared via spark plasma sintering (SPS) with sodium oxide doping levels ranging from 0 wt% to 12 wt%. FESEM analysis revealed changes in sample morphology with increasing sodium content, indicating the formation of granular structures and sodium-rich clusters in the glass matrix. XRD revealed the presence of nanocrystalline phases in doped samples, primarily (Na,Ca)(Si,Al)<sub>4</sub>O<sub>8</sub>. IR spectroscopy demonstrated changes in the glass network structure due to sodium, affecting both silicate and aluminum units. Increasing sodium content led to higher crystallinity and a corresponding decrease in sample density. The thermal expansion increased notably with sodium content, attributed to the disruptive effect of sodium ions on the glass-ceramics structure, while thermal conductivity decreased also attributed to this disruption. AC conductivity increased significantly with sodium, indicating enhanced ionic conductivity, while DC conductivity was observed in doped samples at higher temperatures, with activation energies consistent with ionic conduction mechanisms. The exponent-dependent (s) parameter decreased with higher sodium content, suggesting limited ion diffusion.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"329 ","pages":"Article 130139"},"PeriodicalIF":4.3,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142663134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-10DOI: 10.1016/j.matchemphys.2024.130127
S.C. Sharma
In this study, Ho³⁺-doped BaGd₂ZnO₅ (1–11 mol%) nanophosphors (BGZO:Ho3+ NPs) were synthesized through combustion synthesis, utilizing Spirulina leaf extract as a natural green fuel. Luminescence studies revealed that the BGZO:Ho³⁺ phosphors exhibit a strong green emission primarily resulting from the 5S2→5I8 transition of Ho³⁺ ions. The optimal doping concentration was found to be 7 mol % Ho³⁺, which yielded the highest luminescence efficiency. Furthermore, the CIE chromaticity coordinates for BGZO:7Ho³⁺ were accurately determined to be (0.2595, 0.7290), with a color purity (CP) of 99.98 %. These results indicate the potential of this material for producing high-quality green emissions suitable for solid-state lighting and display applications. Optimized BGZO:Ho3+ NPs were utilized for latent fingerprints (LFPs) development via the powder dusting method. Under 365 nm UV light, the NPs effectively revealed Level I-III fingerprints (FPs) details, including ridge patterns, minutiae, and sweat pore features, on various substrates such as glass, plastic, and metal. The high luminescence of BGZO:Ho3+ NPs under UV illumination offers a sensitive and non-destructive method for enhancing FPs visibility, making it a promising tool for forensic applications. In addition, this study focuses on FPs poroscopy, examining the detailed pore structure of LFPs for forensic identification. Using advanced imaging techniques, we analyzed sweat pore distribution, size, and shape across various substrates and conditions. A detailed poroscopic analysis of LFPs, focusing on key parameters such as pore interspacing (165–332 μm), pore size (4140–9956 μm2), shapes (elliptical, rhomboid, triangular, square and rectangular) and pore angle (167°–179°). Further, a mathematical model was developed using Python-based software to enable precise and accurate analysis of FPs, enhancing clarity and identification accuracy, supporting the uniqueness of FPs beyond ridge patterns. The results demonstrate the potential of poroscopy for enhancing FPs analysis by offering an additional layer of precise biometric data.
{"title":"Synthesis and application of Ho³⁺ doped BaGd₂ZnO₅ nanophosphors for enhanced latent fingerprint development and poroscopy","authors":"S.C. Sharma","doi":"10.1016/j.matchemphys.2024.130127","DOIUrl":"10.1016/j.matchemphys.2024.130127","url":null,"abstract":"<div><div>In this study, Ho³⁺-doped BaGd₂ZnO₅ (1–11 mol%) nanophosphors (BGZO:Ho<sup>3+</sup> NPs) were synthesized through combustion synthesis, utilizing <em>Spirulina</em> leaf extract as a natural green fuel. Luminescence studies revealed that the BGZO:Ho³⁺ phosphors exhibit a strong green emission primarily resulting from the <sup>5</sup>S<sub>2</sub>→<sup>5</sup>I<sub>8</sub> transition of Ho³⁺ ions. The optimal doping concentration was found to be 7 mol % Ho³⁺, which yielded the highest luminescence efficiency. Furthermore, the CIE chromaticity coordinates for BGZO:7Ho³⁺ were accurately determined to be (0.2595, 0.7290), with a color purity (CP) of 99.98 %. These results indicate the potential of this material for producing high-quality green emissions suitable for solid-state lighting and display applications. Optimized BGZO:Ho<sup>3+</sup> NPs were utilized for latent fingerprints (LFPs) development via the powder dusting method. Under 365 nm UV light, the NPs effectively revealed Level I-III fingerprints (FPs) details, including ridge patterns, minutiae, and sweat pore features, on various substrates such as glass, plastic, and metal. The high luminescence of BGZO:Ho<sup>3+</sup> NPs under UV illumination offers a sensitive and non-destructive method for enhancing FPs visibility, making it a promising tool for forensic applications. In addition, this study focuses on FPs poroscopy, examining the detailed pore structure of LFPs for forensic identification. Using advanced imaging techniques, we analyzed sweat pore distribution, size, and shape across various substrates and conditions. A detailed poroscopic analysis of LFPs, focusing on key parameters such as pore interspacing (165–332 μm), pore size (4140–9956 μm<sup>2</sup>), shapes (elliptical, rhomboid, triangular, square and rectangular) and pore angle (167°–179°). Further, a mathematical model was developed using <em>Python</em>-based software to enable precise and accurate analysis of FPs, enhancing clarity and identification accuracy, supporting the uniqueness of FPs beyond ridge patterns. The results demonstrate the potential of poroscopy for enhancing FPs analysis by offering an additional layer of precise biometric data.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"329 ","pages":"Article 130127"},"PeriodicalIF":4.3,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142663450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-09DOI: 10.1016/j.matchemphys.2024.130131
Yiqing Wang, Cai Li, Ye Yuan, Yimao Yu, Kai Wang, Yuan Huang
In this paper, based on the improved Miedema model and the quaternary alloy calculation model expanded by Chou model, the activity calculation model of the ternary alloy system is extended to the quaternary alloy system through the ternary alloy activity calculation model of Wagner and Ma Zhongting et al. In addition, a new deviation function is used in the expanded quaternary alloy calculation model to calculate the thermodynamic properties of quaternary alloys, which meets the characteristics of both non-negativity and reducibility. Using the developed model, this paper calculates the thermodynamic data of each sub-binary, sub-ternary, and quaternary system in the Cr–Mo–Nb–V quaternary high entropy alloy system. Subsequently, this paper analyzes the interactions between components, predicts the possible precipitated phases in the alloy system, and explains the possibility of forming a solid solution in the alloy system. The final results are consistent with those shown in the literatures on studying the Cr–Mo–Nb–V quaternary alloy system, which verifies the applicability of the developed model in the miscible alloy system, enriches the thermodynamic database of Cr–Mo–Nb–V alloy, and provides theoretical reference and ideas for the design of multi-component alloys.
{"title":"Expansion of thermodynamic calculation principle of multi-component alloy and its application in the study of thermodynamic properties of the Cr–Mo–Nb–V high entropy alloy","authors":"Yiqing Wang, Cai Li, Ye Yuan, Yimao Yu, Kai Wang, Yuan Huang","doi":"10.1016/j.matchemphys.2024.130131","DOIUrl":"10.1016/j.matchemphys.2024.130131","url":null,"abstract":"<div><div>In this paper, based on the improved Miedema model and the quaternary alloy calculation model expanded by Chou model, the activity calculation model of the ternary alloy system is extended to the quaternary alloy system through the ternary alloy activity calculation model of Wagner and Ma Zhongting et al. In addition, a new deviation function is used in the expanded quaternary alloy calculation model to calculate the thermodynamic properties of quaternary alloys, which meets the characteristics of both non-negativity and reducibility. Using the developed model, this paper calculates the thermodynamic data of each sub-binary, sub-ternary, and quaternary system in the Cr–Mo–Nb–V quaternary high entropy alloy system. Subsequently, this paper analyzes the interactions between components, predicts the possible precipitated phases in the alloy system, and explains the possibility of forming a solid solution in the alloy system. The final results are consistent with those shown in the literatures on studying the Cr–Mo–Nb–V quaternary alloy system, which verifies the applicability of the developed model in the miscible alloy system, enriches the thermodynamic database of Cr–Mo–Nb–V alloy, and provides theoretical reference and ideas for the design of multi-component alloys.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"329 ","pages":"Article 130131"},"PeriodicalIF":4.3,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142663456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The ground-state properties of tetragonal L10 type FeNi alloy have been thoroughly studied, while its physical properties under high pressure are poorly understood. Here, the effect of pressure on the structural, magnetic, mechanical and dynamical properties of L10-FeNi are systematically investigated from the first principles calculations. The critical pressure of ferromagnetic collapse is detected to be 250 GPa, and the system is mechanically and dynamically stable below the critical pressure. The pressure-induced lattice distortion is identified in the pressure range of 80–150 GPa. Within this pressure range, the magnetic moments of the system decrease dramatically, the elastic constants C12, C13, C33 and bulk modulus B show softening behavior, and consequently the ductility, longitudinal sound velocity, and acoustic Grüneisen constant exhibit softening behavior, while the elastic anisotropy increase sharply. Furthermore, there are significant variations in magnetocrystalline anisotropy, coercivity, maximum magnetic energy product and magnetic hardness parameters within the pressure range of lattice distortion. More interesting is the discovery that the pressure-induced lattice distortion triggers a transition from semi-hard to hard magnet near 130 GPa.
{"title":"Effect of pressure-induced lattice distortion on physical properties of L10-FeNi ordered alloy","authors":"Tai-min Cheng, Qing-qing Fan, Guo-qing chai, Xin-xin Zhang, Guo-liang Yu","doi":"10.1016/j.matchemphys.2024.130137","DOIUrl":"10.1016/j.matchemphys.2024.130137","url":null,"abstract":"<div><div>The ground-state properties of tetragonal <em>L</em>1<sub>0</sub> type FeNi alloy have been thoroughly studied, while its physical properties under high pressure are poorly understood. Here, the effect of pressure on the structural, magnetic, mechanical and dynamical properties of <em>L</em>1<sub>0</sub>-FeNi are systematically investigated from the first principles calculations. The critical pressure of ferromagnetic collapse is detected to be 250 GPa, and the system is mechanically and dynamically stable below the critical pressure. The pressure-induced lattice distortion is identified in the pressure range of 80–150 GPa. Within this pressure range, the magnetic moments of the system decrease dramatically, the elastic constants <em>C</em><sub>12</sub>, <em>C</em><sub>13</sub>, <em>C</em><sub>33</sub> and bulk modulus <em>B</em> show softening behavior, and consequently the ductility, longitudinal sound velocity, and acoustic Grüneisen constant exhibit softening behavior, while the elastic anisotropy increase sharply. Furthermore, there are significant variations in magnetocrystalline anisotropy, coercivity, maximum magnetic energy product and magnetic hardness parameters within the pressure range of lattice distortion. More interesting is the discovery that the pressure-induced lattice distortion triggers a transition from semi-hard to hard magnet near 130 GPa.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"329 ","pages":"Article 130137"},"PeriodicalIF":4.3,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142663449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-09DOI: 10.1016/j.matchemphys.2024.130132
Badr M. Thamer , Faiz A. Al-aizari , Ibrahim A. Alnaser , Mohamed H. El-Newehy , Abdullah M. Al-Enizi
In this study, zero-valent nickel (ZVNi) supported on high porous activated carbon (HPAC) was successfully prepared and impregnated into polyacrylonitrile nanofibers (PAN NFs) by electrospinning to design nanofiber composite called ZVNi@HPAC/PAN NFs. The produced ZVNi@HPAC and PAN NFs its composite were characterized using a variety of characterization techniques, including FESEM, TEM, XRD, EDX, FTIR and TGA. The adsorption performance of the PAN NFs and ZVNi@HPAC/PAN NFs was evaluated under varying conditions of initial concentration of crystal violet dye (CV) (25–1000 mg/L), pH (3–10), temperature (25–40 °C), ionic strength (0.05–0.3 M) and time (5 min–24 h). The synergistic effect on adsorption performance resulting from the combination of the ZVNi@HPAC and PAN NFs was studied by batch adsorption test. Isothermal studies confirmed that the Langmuir model is the most accurate for simulating the results of crystal violet dye adsorption. The ZVNi@HPAC composite exhibited a high adsorption capacity (qmax) of 723.75 mg/g compared to 69.75 mg/g for pure PAN NFs at pH 10 and 40 °C. ZVNi@HPAC showed superior CV dye removal efficiency of 96 % even at high concentrations (300 mg/L), within a short time of 60 min, compared to 27 % efficiency for PAN NFs. The ZVNi@HPAC/PAN NFs exhibit high reusability by keeping adsorption performance at more than 98.79 % after ten reuse cycles.
{"title":"Novel hybrid adsorbent for cationic dye decoloration: Zero-valent nickel nanoparticles supported on activated carbon incorporated in electrospun polyacrylonitrile nanofibers","authors":"Badr M. Thamer , Faiz A. Al-aizari , Ibrahim A. Alnaser , Mohamed H. El-Newehy , Abdullah M. Al-Enizi","doi":"10.1016/j.matchemphys.2024.130132","DOIUrl":"10.1016/j.matchemphys.2024.130132","url":null,"abstract":"<div><div>In this study, zero-valent nickel (ZVNi) supported on high porous activated carbon (HPAC) was successfully prepared and impregnated into polyacrylonitrile nanofibers (PAN NFs) by electrospinning to design nanofiber composite called ZVNi@HPAC/PAN NFs. The produced ZVNi@HPAC and PAN NFs its composite were characterized using a variety of characterization techniques, including FESEM, TEM, XRD, EDX, FTIR and TGA. The adsorption performance of the PAN NFs and ZVNi@HPAC/PAN NFs was evaluated under varying conditions of initial concentration of crystal violet dye (CV) (25–1000 mg/L), pH (3–10), temperature (25–40 °C), ionic strength (0.05–0.3 M) and time (5 min–24 h). The synergistic effect on adsorption performance resulting from the combination of the ZVNi@HPAC and PAN NFs was studied by batch adsorption test. Isothermal studies confirmed that the Langmuir model is the most accurate for simulating the results of crystal violet dye adsorption. The ZVNi@HPAC composite exhibited a high adsorption capacity (q<sub>max</sub>) of 723.75 mg/g compared to 69.75 mg/g for pure PAN NFs at pH 10 and 40 °C. ZVNi@HPAC showed superior CV dye removal efficiency of 96 % even at high concentrations (300 mg/L), within a short time of 60 min, compared to 27 % efficiency for PAN NFs. The ZVNi@HPAC/PAN NFs exhibit high reusability by keeping adsorption performance at more than 98.79 % after ten reuse cycles.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"329 ","pages":"Article 130132"},"PeriodicalIF":4.3,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142663133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-09DOI: 10.1016/j.matchemphys.2024.130136
Y. Khazani , E. Rafiee , A. Samadi
In this study, we have fabricated a highly efficient, environmentally safe, and flexible piezoelectric nanogenerator (PENG) utilizing a composite material comprising manganese oxide-bismuth tungstate (MnO2–Bi2WO6), polyvinylidene fluoride (PVDF), and reduced graphene oxide (RGO) by an optimized electrospinning technique. The PENG constructed with aluminum-based electrodes demonstrates an open-circuit voltage of 5 V and a short-circuit current of 2 μA under the influence of a compressive force measuring 10 N at a frequency of 3 Hz. These measurements were 3.2 and 3.3 times higher, respectively, than those of the original PVDF PENG. Moreover, the optimized PENG achieved an instantaneous power density of 0.4 mW. The exceptional performance of the nanogenerator can be ascribed to the synergistic blend of the β-phase PVDF polymer, the non-centrosymmetric characteristics of MnO2–Bi2WO6 nanosheets, and the electrical conductivity provided by RGO. Additionally, to evaluate both its capacity for sensing and energy harvesting capabilities, the fabricated PENG was utilized for detecting diverse human movements and charging multiple capacitors. Observations revealed that mechanical stimulation could charge a capacitor with a capacity of 1 μF–5 V within 2.4 s, suggesting a viable platform for removing the requirement of an external power source for operating portable devices. As a result, the created PENG exhibits considerable promise and can serve as a viable substitute for traditional power sources in self-sustaining devices, providing its stability and flexibility.
{"title":"Development of an efficient, lead-free piezoelectric nanogenerator utilizing PVDF: MnO2–Bi2WO6: RGO composite fiber for self-powered sensing and biomechanical energy harvesting","authors":"Y. Khazani , E. Rafiee , A. Samadi","doi":"10.1016/j.matchemphys.2024.130136","DOIUrl":"10.1016/j.matchemphys.2024.130136","url":null,"abstract":"<div><div>In this study, we have fabricated a highly efficient, environmentally safe, and flexible piezoelectric nanogenerator (PENG) utilizing a composite material comprising manganese oxide-bismuth tungstate (MnO<sub>2</sub>–Bi<sub>2</sub>WO<sub>6</sub>), polyvinylidene fluoride (PVDF), and reduced graphene oxide (RGO) by an optimized electrospinning technique. The PENG constructed with aluminum-based electrodes demonstrates an open-circuit voltage of 5 V and a short-circuit current of 2 μA under the influence of a compressive force measuring 10 N at a frequency of 3 Hz. These measurements were 3.2 and 3.3 times higher, respectively, than those of the original PVDF PENG. Moreover, the optimized PENG achieved an instantaneous power density of 0.4 mW. The exceptional performance of the nanogenerator can be ascribed to the synergistic blend of the <em>β</em>-phase PVDF polymer, the non-centrosymmetric characteristics of MnO<sub>2</sub>–Bi<sub>2</sub>WO<sub>6</sub> nanosheets, and the electrical conductivity provided by RGO. Additionally, to evaluate both its capacity for sensing and energy harvesting capabilities, the fabricated PENG was utilized for detecting diverse human movements and charging multiple capacitors. Observations revealed that mechanical stimulation could charge a capacitor with a capacity of 1 μF–5 V within 2.4 s, suggesting a viable platform for removing the requirement of an external power source for operating portable devices. As a result, the created PENG exhibits considerable promise and can serve as a viable substitute for traditional power sources in self-sustaining devices, providing its stability and flexibility.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"329 ","pages":"Article 130136"},"PeriodicalIF":4.3,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142663451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-09DOI: 10.1016/j.matchemphys.2024.130130
Weiyang Zhou , Qichi Le , Ye Shi , Qiyu Liao , Zhaoyang Yin , Yanchao Jiang
Mg–Zn–Y alloy has become the favorite of magnesium alloy research due to its excellent comprehensive performance and increasingly mature deformation process. For the gas tungsten arc welding (GTAW) process of ZW61 magnesium alloy thin plates, the physical field and microstructure evolution is simulated with the finite volume method and the cellular automata (CA) method in this paper. The flow field results show that the Marangoni force dominates the flow of liquid metal in the molten pool from the center of the molten pool to the edge of the molten pool. The increase in welding speed significantly increases the temperature gradient in the molten pool. In addition, from the results of the stress field, the residual stresses are mainly distributed in the fusion zone (FZ) and heat-affected zone (HAZ). The maximum longitudinal residual stress occurs in the HAZ, about 82 MPa. While the maximum transverse residual stress occurs at the end of the plate, about 104 MPa. Neither exceeds the tensile strength of ZW61 alloy, so no cracks appear in the joint. The temperature gradient of the welded plate and the solidification rate of the molten metal in the molten pool are regulated by adjusting the welding process parameters, to improve the microstructure in the FZ. The minimum average grain size of the FZ is only 29.50 μm under the optimum welding process conditions set in this paper.
{"title":"Numerical simulation of gas tungsten arc welding for ZW61 magnesium alloy thin plates","authors":"Weiyang Zhou , Qichi Le , Ye Shi , Qiyu Liao , Zhaoyang Yin , Yanchao Jiang","doi":"10.1016/j.matchemphys.2024.130130","DOIUrl":"10.1016/j.matchemphys.2024.130130","url":null,"abstract":"<div><div>Mg–Zn–Y alloy has become the favorite of magnesium alloy research due to its excellent comprehensive performance and increasingly mature deformation process. For the gas tungsten arc welding (GTAW) process of ZW61 magnesium alloy thin plates, the physical field and microstructure evolution is simulated with the finite volume method and the cellular automata (CA) method in this paper. The flow field results show that the Marangoni force dominates the flow of liquid metal in the molten pool from the center of the molten pool to the edge of the molten pool. The increase in welding speed significantly increases the temperature gradient in the molten pool. In addition, from the results of the stress field, the residual stresses are mainly distributed in the fusion zone (FZ) and heat-affected zone (HAZ). The maximum longitudinal residual stress occurs in the HAZ, about 82 MPa. While the maximum transverse residual stress occurs at the end of the plate, about 104 MPa. Neither exceeds the tensile strength of ZW61 alloy, so no cracks appear in the joint. The temperature gradient of the welded plate and the solidification rate of the molten metal in the molten pool are regulated by adjusting the welding process parameters, to improve the microstructure in the FZ. The minimum average grain size of the FZ is only 29.50 μm under the optimum welding process conditions set in this paper.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"329 ","pages":"Article 130130"},"PeriodicalIF":4.3,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142663454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}