{"title":"AdapINT: A Flexible and Adaptive In-Band Network Telemetry System Based on Deep Reinforcement Learning","authors":"Penghui Zhang;Hua Zhang;Yibo Pi;Zijian Cao;Jingyu Wang;Jianxin Liao","doi":"10.1109/TNSM.2024.3427403","DOIUrl":null,"url":null,"abstract":"In-band Network Telemetry (INT) has emerged as a promising network measurement technology. However, existing network telemetry systems lack the flexibility to meet diverse telemetry requirements and are also difficult to adapt to dynamic network environments. In this paper, we propose AdapINT, a versatile and adaptive in-band network telemetry framework assisted by dual-timescale probes, including long-period auxiliary probes (APs) and short-period dynamic probes (DPs). Technically, the APs collect basic network status information, which is used for the path planning of DPs. To achieve full network coverage, we propose an auxiliary probes path deployment (APPD) algorithm based on the Depth-First-Search (DFS). The DPs collect specific network information for telemetry tasks. To ensure that the DPs can meet diverse telemetry requirements and adapt to dynamic network environments, we apply the deep reinforcement learning (DRL) technique and transfer learning method to design the dynamic probes path deployment (DPPD) algorithm. The evaluation results show that AdapINT can flexibly customize the telemetry system to accommodate diverse requirements and network environments. In latency-aware networks, AdapINT effectively reduces telemetry latency, while in overhead-aware networks, it significantly lowers the control overheads.","PeriodicalId":13423,"journal":{"name":"IEEE Transactions on Network and Service Management","volume":"21 5","pages":"5505-5520"},"PeriodicalIF":4.7000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network and Service Management","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10601602/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In-band Network Telemetry (INT) has emerged as a promising network measurement technology. However, existing network telemetry systems lack the flexibility to meet diverse telemetry requirements and are also difficult to adapt to dynamic network environments. In this paper, we propose AdapINT, a versatile and adaptive in-band network telemetry framework assisted by dual-timescale probes, including long-period auxiliary probes (APs) and short-period dynamic probes (DPs). Technically, the APs collect basic network status information, which is used for the path planning of DPs. To achieve full network coverage, we propose an auxiliary probes path deployment (APPD) algorithm based on the Depth-First-Search (DFS). The DPs collect specific network information for telemetry tasks. To ensure that the DPs can meet diverse telemetry requirements and adapt to dynamic network environments, we apply the deep reinforcement learning (DRL) technique and transfer learning method to design the dynamic probes path deployment (DPPD) algorithm. The evaluation results show that AdapINT can flexibly customize the telemetry system to accommodate diverse requirements and network environments. In latency-aware networks, AdapINT effectively reduces telemetry latency, while in overhead-aware networks, it significantly lowers the control overheads.
期刊介绍:
IEEE Transactions on Network and Service Management will publish (online only) peerreviewed archival quality papers that advance the state-of-the-art and practical applications of network and service management. Theoretical research contributions (presenting new concepts and techniques) and applied contributions (reporting on experiences and experiments with actual systems) will be encouraged. These transactions will focus on the key technical issues related to: Management Models, Architectures and Frameworks; Service Provisioning, Reliability and Quality Assurance; Management Functions; Enabling Technologies; Information and Communication Models; Policies; Applications and Case Studies; Emerging Technologies and Standards.