An improved forgetting factor recursive least square and extended particle filtering algorithm for accurate lithium-ion battery state of energy estimation

IF 2.4 4区 化学 Q3 CHEMISTRY, PHYSICAL Ionics Pub Date : 2024-07-19 DOI:10.1007/s11581-024-05698-9
Xianfeng Shen, Shunli Wang, Chunmei Yu, Zehao Li, Carlos Fernandez
{"title":"An improved forgetting factor recursive least square and extended particle filtering algorithm for accurate lithium-ion battery state of energy estimation","authors":"Xianfeng Shen,&nbsp;Shunli Wang,&nbsp;Chunmei Yu,&nbsp;Zehao Li,&nbsp;Carlos Fernandez","doi":"10.1007/s11581-024-05698-9","DOIUrl":null,"url":null,"abstract":"<div><p>State of energy (SOE) estimation of lithium-ion batteries is the basis for electric vehicle range prediction. To improve the estimation accuracy of SOE under complex dynamic operating conditions. In this paper, ternary lithium-ion batteries are used as the object of study and propose a hybrid approach that combines a particle swarm optimization-based forgetting factor recursive least squares method with an improved curve-increasing particle swarm optimization-extended particle filter algorithm for accurate estimation of the state of energy of lithium-ion batteries. Firstly, for the accuracy defects of the FFRLS method, the particle swarm optimization algorithm is used to optimize the initial value of the optimal parameters and the value of the forgetting factor. Secondly, the curve-increasing strategy is introduced into particle swarm optimization to solve the sub-poor problem of extended particle filtering. Experimental validation through different working conditions at multiple temperatures. The results show that the maximum error of parameter identification using the PSO-FFRLS algorithm is stabilized within 1.5%, and the SOE estimation error is within 1.5% for both BBDST and DST conditions at both temperatures. Therefore, the algorithm has high accuracy and robustness under different complex working conditions. The estimation results prove the effectiveness of the energy state estimation.</p></div>","PeriodicalId":599,"journal":{"name":"Ionics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ionics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11581-024-05698-9","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

State of energy (SOE) estimation of lithium-ion batteries is the basis for electric vehicle range prediction. To improve the estimation accuracy of SOE under complex dynamic operating conditions. In this paper, ternary lithium-ion batteries are used as the object of study and propose a hybrid approach that combines a particle swarm optimization-based forgetting factor recursive least squares method with an improved curve-increasing particle swarm optimization-extended particle filter algorithm for accurate estimation of the state of energy of lithium-ion batteries. Firstly, for the accuracy defects of the FFRLS method, the particle swarm optimization algorithm is used to optimize the initial value of the optimal parameters and the value of the forgetting factor. Secondly, the curve-increasing strategy is introduced into particle swarm optimization to solve the sub-poor problem of extended particle filtering. Experimental validation through different working conditions at multiple temperatures. The results show that the maximum error of parameter identification using the PSO-FFRLS algorithm is stabilized within 1.5%, and the SOE estimation error is within 1.5% for both BBDST and DST conditions at both temperatures. Therefore, the algorithm has high accuracy and robustness under different complex working conditions. The estimation results prove the effectiveness of the energy state estimation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于精确估算锂离子电池能量状态的改进型遗忘因子递归最小平方和扩展粒子滤波算法
锂离子电池的能量状态(SOE)估算是电动汽车续航里程预测的基础。为了提高复杂动态工作条件下 SOE 的估计精度。本文以三元锂离子电池为研究对象,提出了一种基于粒子群优化的遗忘因子递归最小二乘法与改进的曲线递增粒子群优化-扩展粒子滤波算法相结合的混合方法,用于精确估算锂离子电池的能量状态。首先,针对 FFRLS 方法的精度缺陷,采用粒子群优化算法对最优参数的初始值和遗忘因子值进行优化。其次,在粒子群优化中引入曲线递增策略,以解决扩展粒子滤波的次穷问题。通过多种温度下的不同工作条件进行实验验证。结果表明,使用 PSO-FFRLS 算法的参数识别最大误差稳定在 1.5% 以内,在 BBDST 和 DST 两种温度条件下,SOE 估计误差均在 1.5% 以内。因此,该算法在不同的复杂工况下都具有较高的精度和鲁棒性。估计结果证明了能量状态估计的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ionics
Ionics 化学-电化学
CiteScore
5.30
自引率
7.10%
发文量
427
审稿时长
2.2 months
期刊介绍: Ionics is publishing original results in the fields of science and technology of ionic motion. This includes theoretical, experimental and practical work on electrolytes, electrode, ionic/electronic interfaces, ionic transport aspects of corrosion, galvanic cells, e.g. for thermodynamic and kinetic studies, batteries, fuel cells, sensors and electrochromics. Fast solid ionic conductors are presently providing new opportunities in view of several advantages, in addition to conventional liquid electrolytes.
期刊最新文献
Eco-inspired synthesis of ZnO/CuO nanocomposites using Phyllanthus niruri: unveiling superior photocatalytic, antibacterial efficacy against Escherichia coli and Staphylococcus aureus, and latent fingerprint studies Investigation of Sr doping effect on oxygen ion de-localization in Gd2Ti2O7 pyrochlore system and its influence on charge relaxation dynamics and ionic conductivity: as electrolyte for IT-SOFCs Structural, electrical, and electrochemical investigations on Cu2+ ion–conducting PVA/HPMC-based blend solid polymer electrolytes Solvent-engineered ZIF-67-derived cobalt-embedded carbon as polysulfide trapping host for high-stability Li–S battery Enhanced stability and electrochemical performance of O3-type NaNi1/3Fe1/3Mn1/3O2 cathode material via yttrium doping for advanced sodium-ion batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1