\(\nu\)Oscillation: a software package for computation and simulation of neutrino oscillation and detection

IF 0.8 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY Journal of the Korean Physical Society Pub Date : 2024-07-19 DOI:10.1007/s40042-024-01120-9
Seunghyeok Jang, Eunil Won, Kyungmin Lee, Eunju Jeon, Young Ju Ko
{"title":"\\(\\nu\\)Oscillation: a software package for computation and simulation of neutrino oscillation and detection","authors":"Seunghyeok Jang,&nbsp;Eunil Won,&nbsp;Kyungmin Lee,&nbsp;Eunju Jeon,&nbsp;Young Ju Ko","doi":"10.1007/s40042-024-01120-9","DOIUrl":null,"url":null,"abstract":"<div><p>The design of neutrino experiments and the analysis of neutrino data rely on precise computations of neutrino oscillations and scattering processes in general. Motivated by this, we developed a unified software package that calculates the expected number and energy spectrum of neutrino events in the liquid scintillation detector taking into account the neutrino flux at production, the oscillations of neutrinos during propagation and their interactions in the detectors. We also implemented the calculation of neutrino flux from nuclear reactors, the Sun, and radioactive isotopes to explorer various experimental setups using a single package. This software package is validated by reproducing the result of calculations and observations in other publications. We also demonstrate the feasibility of this package by calculating the sensitivity of a liquid scintillation detector, currently in planning, to the sterile neutrinos. This work is expected to be utilized to identify the physics potential and optimize the design of future neutrino experiments.</p></div>","PeriodicalId":677,"journal":{"name":"Journal of the Korean Physical Society","volume":"85 5","pages":"381 - 388"},"PeriodicalIF":0.8000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Physical Society","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s40042-024-01120-9","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The design of neutrino experiments and the analysis of neutrino data rely on precise computations of neutrino oscillations and scattering processes in general. Motivated by this, we developed a unified software package that calculates the expected number and energy spectrum of neutrino events in the liquid scintillation detector taking into account the neutrino flux at production, the oscillations of neutrinos during propagation and their interactions in the detectors. We also implemented the calculation of neutrino flux from nuclear reactors, the Sun, and radioactive isotopes to explorer various experimental setups using a single package. This software package is validated by reproducing the result of calculations and observations in other publications. We also demonstrate the feasibility of this package by calculating the sensitivity of a liquid scintillation detector, currently in planning, to the sterile neutrinos. This work is expected to be utilized to identify the physics potential and optimize the design of future neutrino experiments.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
$$\nu$ 震荡:用于计算和模拟中微子震荡和探测的软件包
中微子实验的设计和中微子数据的分析依赖于对中微子振荡和一般散射过程的精确计算。受此激励,我们开发了一个统一的软件包,可以计算液体闪烁探测器中的中微子事件的预期数量和能谱,同时考虑到产生时的中微子通量、传播过程中的中微子振荡以及它们在探测器中的相互作用。我们还对核反应堆、太阳和放射性同位素的中微子通量进行了计算,以便使用单一软件包探索各种实验装置。这个软件包通过重现其他出版物中的计算和观测结果得到了验证。我们还通过计算目前正在规划中的液体闪烁探测器对不育中微子的灵敏度,证明了该软件包的可行性。预计这项工作将用于确定未来中微子实验的物理潜力和优化设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of the Korean Physical Society
Journal of the Korean Physical Society PHYSICS, MULTIDISCIPLINARY-
CiteScore
1.20
自引率
16.70%
发文量
276
审稿时长
5.5 months
期刊介绍: The Journal of the Korean Physical Society (JKPS) covers all fields of physics spanning from statistical physics and condensed matter physics to particle physics. The manuscript to be published in JKPS is required to hold the originality, significance, and recent completeness. The journal is composed of Full paper, Letters, and Brief sections. In addition, featured articles with outstanding results are selected by the Editorial board and introduced in the online version. For emphasis on aspect of international journal, several world-distinguished researchers join the Editorial board. High quality of papers may be express-published when it is recommended or requested.
期刊最新文献
Improved electrical conductivity of graphene film using thermal expansion-assisted hot pressing method A study on the effect of correlated data on predictive capabilities A customized template matching classification system Erratum: Comparative analysis of single and triple material 10 nm Tri-gate FinFET Revisit to the fluid Love numbers and the permanent tide of the Earth
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1