Structure-Preserving Algorithm and Its Error Estimate for the Relativistic Charged-Particle Dynamics Under the Strong Magnetic Field

IF 3.3 2区 数学 Q1 MATHEMATICS, APPLIED Journal of Scientific Computing Pub Date : 2024-07-22 DOI:10.1007/s10915-024-02618-x
Ruili Zhang, Tong Liu, Bin Wang, Jian Liu, Yifa Tang
{"title":"Structure-Preserving Algorithm and Its Error Estimate for the Relativistic Charged-Particle Dynamics Under the Strong Magnetic Field","authors":"Ruili Zhang, Tong Liu, Bin Wang, Jian Liu, Yifa Tang","doi":"10.1007/s10915-024-02618-x","DOIUrl":null,"url":null,"abstract":"<p>This paper investigates the numerical algorithm and its error estimates for the dynamics of relativistic charged particles under a strong maximal ordering scaling magnetic field. To maintain the fundamental principles of relativistic dynamics, including energy conservation, volume preservation, and the Lorentz invariant property, we construct a structure-preserving algorithm using the splitting scheme. This algorithm ensures the preservation of volume, energy, and the Lorentz invariant property (VELPA) exactly. Specifically, we establish an uniform and optimal error bound in both 4-position and 4-velocity for VELPA. Numerical experiments are also presented to demonstrate the advantages of VELPA in both uniform error estimate and conservation of energy, compared to the implicit Euler method and traditional energy-preserving AVF method.</p>","PeriodicalId":50055,"journal":{"name":"Journal of Scientific Computing","volume":"152 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Scientific Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02618-x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the numerical algorithm and its error estimates for the dynamics of relativistic charged particles under a strong maximal ordering scaling magnetic field. To maintain the fundamental principles of relativistic dynamics, including energy conservation, volume preservation, and the Lorentz invariant property, we construct a structure-preserving algorithm using the splitting scheme. This algorithm ensures the preservation of volume, energy, and the Lorentz invariant property (VELPA) exactly. Specifically, we establish an uniform and optimal error bound in both 4-position and 4-velocity for VELPA. Numerical experiments are also presented to demonstrate the advantages of VELPA in both uniform error estimate and conservation of energy, compared to the implicit Euler method and traditional energy-preserving AVF method.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
强磁场下相对论带电粒子动力学的结构保持算法及其误差估计
本文研究了强最大有序缩放磁场下相对论带电粒子动力学的数值算法及其误差估计。为了保持相对论动力学的基本原理,包括能量守恒、体积保持和洛伦兹不变性质,我们利用分裂方案构建了一种结构保持算法。这种算法能精确地确保体积、能量和洛伦兹不变性质(VELPA)的保持。具体来说,我们在 VELPA 的 4 位置和 4 速度上都建立了统一且最优的误差约束。数值实验也证明了 VELPA 与隐式欧拉法和传统能量守恒 AVF 法相比,在均匀误差估计和能量守恒方面的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Scientific Computing
Journal of Scientific Computing 数学-应用数学
CiteScore
4.00
自引率
12.00%
发文量
302
审稿时长
4-8 weeks
期刊介绍: Journal of Scientific Computing is an international interdisciplinary forum for the publication of papers on state-of-the-art developments in scientific computing and its applications in science and engineering. The journal publishes high-quality, peer-reviewed original papers, review papers and short communications on scientific computing.
期刊最新文献
Stochastic Conformal Integrators for Linearly Damped Stochastic Poisson Systems. Inf-sup stable space-time Local Discontinuous Galerkin method for the heat equation. Automatic Differentiation is Essential in Training Neural Networks for Solving Differential Equations. Homotopy Relaxation Training Algorithms for Infinite-Width Two-Layer ReLU Neural Networks. A Posteriori Error Analysis for a Coupled Stokes-Poroelastic System with Multiple Compartments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1