Constructing Fe-Co2P/CeO2 heterostructure nanosheet arrays for attaining energy-saving hydrogen production in seawater

IF 9.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Rare Metals Pub Date : 2024-07-20 DOI:10.1007/s12598-024-02932-1
Rui-Qing Li, Hang Su, Shui-Xiang Xie, Xiao-Yu Wan, Chang-Ming Wang, Guang-Yu Zhang, Ming-Zheng Ge, Jia-Mu Dai, Chao-Zhuang Xue, Chao-Rong Li, Jun Cao, Wei Zhang
{"title":"Constructing Fe-Co2P/CeO2 heterostructure nanosheet arrays for attaining energy-saving hydrogen production in seawater","authors":"Rui-Qing Li,&nbsp;Hang Su,&nbsp;Shui-Xiang Xie,&nbsp;Xiao-Yu Wan,&nbsp;Chang-Ming Wang,&nbsp;Guang-Yu Zhang,&nbsp;Ming-Zheng Ge,&nbsp;Jia-Mu Dai,&nbsp;Chao-Zhuang Xue,&nbsp;Chao-Rong Li,&nbsp;Jun Cao,&nbsp;Wei Zhang","doi":"10.1007/s12598-024-02932-1","DOIUrl":null,"url":null,"abstract":"<div><p>Electrolyzing seawater is a promising solution to produce hydrogen, which is hindered by low-efficiency oxygen evolution reaction (OER) and noxious chloride chemistry. Herein, the Fe-Co<sub>2</sub>P/CeO<sub>2</sub> heterostructure nanosheet arrays are developed to achieve energy-saving and chlorine-free hydrogen generation by coupling hydrogen evolution reaction (HER) with hydrazine oxidation reaction (HzOR) in seawater. The Fe-Co<sub>2</sub>P/CeO<sub>2</sub> realizes current densities of 10 and 400 mA·cm<sup>−2</sup> at 52 and 204 mV for HER. The anode potential is significantly decreased after replacing OER with HzOR. Theoretical calculations display that the electronic structure of Fe-Co<sub>2</sub>P can be regulated after coupling CeO<sub>2</sub>, which lowers the water dissociation barrier and optimizes hydrogen adsorption-free energy, thus boosting catalytic kinetics. Significantly, the hybrid seawater electrolyzer produces hydrogen at ultralow cell voltages, greatly reducing traditional water electrolysis voltages and avoiding hazardous chlorine chemistry. This study provides an avenue to exploit advanced catalysts for acquiring hydrogen with energy-efficiency and chlorine-free from abundant ocean.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"43 12","pages":"6426 - 6435"},"PeriodicalIF":9.6000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12598-024-02932-1","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrolyzing seawater is a promising solution to produce hydrogen, which is hindered by low-efficiency oxygen evolution reaction (OER) and noxious chloride chemistry. Herein, the Fe-Co2P/CeO2 heterostructure nanosheet arrays are developed to achieve energy-saving and chlorine-free hydrogen generation by coupling hydrogen evolution reaction (HER) with hydrazine oxidation reaction (HzOR) in seawater. The Fe-Co2P/CeO2 realizes current densities of 10 and 400 mA·cm−2 at 52 and 204 mV for HER. The anode potential is significantly decreased after replacing OER with HzOR. Theoretical calculations display that the electronic structure of Fe-Co2P can be regulated after coupling CeO2, which lowers the water dissociation barrier and optimizes hydrogen adsorption-free energy, thus boosting catalytic kinetics. Significantly, the hybrid seawater electrolyzer produces hydrogen at ultralow cell voltages, greatly reducing traditional water electrolysis voltages and avoiding hazardous chlorine chemistry. This study provides an avenue to exploit advanced catalysts for acquiring hydrogen with energy-efficiency and chlorine-free from abundant ocean.

Graphical abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
构建 Fe-Co2P/CeO2 异质结构纳米片阵列,在海水中实现节能制氢
电解海水是一种很有前景的制氢方案,但其受到低效率氧进化反应(OER)和有毒氯化物化学反应的阻碍。本文开发了 Fe-Co2P/CeO2 异质结构纳米片阵列,通过将海水中的氢进化反应(HER)与肼氧化反应(HzOR)耦合,实现了节能且无氯制氢。Fe-Co2P/CeO2 在 52 和 204 mV 的电压下实现了 10 和 400 mA-cm-2 的 HER 电流密度。用 HzOR 取代 OER 后,阳极电位明显下降。理论计算显示,耦合 CeO2 后,Fe-Co2P 的电子结构可以调节,从而降低了水的解离势垒,优化了无氢吸附能,从而提高了催化动力学。值得注意的是,混合海水电解槽能在超低电池电压下产生氢气,大大降低了传统水电解电压,避免了有害的氯化学反应。这项研究为利用先进催化剂从丰富的海洋中获取高效节能且不含氯的氢气提供了一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
期刊最新文献
Self-assembled co-delivery system of gold nanoparticles and paclitaxel based on in-situ dynamic covalent chemistry for synergistic chemo-photothermal therapy Multi-scale inhomogeneity and anomalous mechanical response of nanoscale metallic glass pillar by cryogenic thermal cycling Preparation and electrocatalytic performance of novel-integrated Ni-Mo sulfide electrode materials for water splitting Tailoring thermal behavior and luminous performance in LuAG:Ce films via thickness control for high-power laser lighting applications Pseudo-binary composite of Sr2TiMoO6–Al2O3 as a novel microwave absorbing material
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1