Modularized neural network incorporating physical priors for future building energy modeling

IF 6.7 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Patterns Pub Date : 2024-07-19 DOI:10.1016/j.patter.2024.101029
{"title":"Modularized neural network incorporating physical priors for future building energy modeling","authors":"","doi":"10.1016/j.patter.2024.101029","DOIUrl":null,"url":null,"abstract":"<p>Building energy modeling (BEM) is fundamental for achieving optimized energy control, resilient retrofit designs, and sustainable urbanization to mitigate climate change. However, traditional BEM requires detailed building information, expert knowledge, substantial modeling efforts, and customized case-by-case calibrations. This process must be repeated for every building, thereby limiting its scalability. To address these limitations, we developed a modularized neural network incorporating physical priors (ModNN), which is improved by its model structure incorporating heat balance equations, physically consistent model constraints, and data-driven modular design that can allow for multiple-building applications through model sharing and inheritance. We demonstrated its scalability in four cases: load prediction, indoor environment modeling, building retrofitting, and energy optimization. This approach provides guidance for future BEM by incorporating physical priors into data-driven models without extensive modeling efforts, paving the way for large-scale BEM, energy management, retrofit designs, and buildings-to-grid integration.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":"80 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Patterns","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.patter.2024.101029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Building energy modeling (BEM) is fundamental for achieving optimized energy control, resilient retrofit designs, and sustainable urbanization to mitigate climate change. However, traditional BEM requires detailed building information, expert knowledge, substantial modeling efforts, and customized case-by-case calibrations. This process must be repeated for every building, thereby limiting its scalability. To address these limitations, we developed a modularized neural network incorporating physical priors (ModNN), which is improved by its model structure incorporating heat balance equations, physically consistent model constraints, and data-driven modular design that can allow for multiple-building applications through model sharing and inheritance. We demonstrated its scalability in four cases: load prediction, indoor environment modeling, building retrofitting, and energy optimization. This approach provides guidance for future BEM by incorporating physical priors into data-driven models without extensive modeling efforts, paving the way for large-scale BEM, energy management, retrofit designs, and buildings-to-grid integration.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模块化神经网络结合物理先验,用于未来建筑能耗建模
建筑能源建模(BEM)是实现优化能源控制、弹性改造设计和可持续城市化以减缓气候变化的基础。然而,传统的 BEM 需要详细的建筑信息、专家知识、大量建模工作以及定制的个案校准。每个建筑都必须重复这一过程,从而限制了其可扩展性。为了解决这些局限性,我们开发了一种包含物理先验的模块化神经网络(ModNN),其模型结构包含热平衡方程、物理上一致的模型约束以及数据驱动的模块化设计,可通过模型共享和继承实现多建筑应用。我们在负载预测、室内环境建模、建筑改造和能源优化等四个案例中展示了其可扩展性。这种方法无需大量建模工作就能将物理先验纳入数据驱动模型,为未来的 BEM 提供了指导,为大规模 BEM、能源管理、改造设计和楼宇并网集成铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Patterns
Patterns Decision Sciences-Decision Sciences (all)
CiteScore
10.60
自引率
4.60%
发文量
153
审稿时长
19 weeks
期刊介绍:
期刊最新文献
Data-knowledge co-driven innovations in engineering and management. Integration of large language models and federated learning. Decorrelative network architecture for robust electrocardiogram classification. Best holdout assessment is sufficient for cancer transcriptomic model selection. The recent Physics and Chemistry Nobel Prizes, AI, and the convergence of knowledge fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1