{"title":"A privacy-preserving approach for cloud-based protein fold recognition","authors":"","doi":"10.1016/j.patter.2024.101023","DOIUrl":null,"url":null,"abstract":"<p>The complexity and cost of training machine learning models have made cloud-based machine learning as a service (MLaaS) attractive for businesses and researchers. MLaaS eliminates the need for in-house expertise by providing pre-built models and infrastructure. However, it raises data privacy and model security concerns, especially in medical fields like protein fold recognition. We propose a secure three-party computation-based MLaaS solution for privacy-preserving protein fold recognition, protecting both sequence and model privacy. Our efficient private building blocks enable complex operations privately, including addition, multiplication, multiplexer with a different methodology, most-significant bit, modulus conversion, and exact exponential operations. We demonstrate our privacy-preserving recurrent kernel network (RKN) solution, showing that it matches the performance of non-private models. Our scalability analysis indicates linear scalability with RKN parameters, making it viable for real-world deployment. This solution holds promise for converting other medical domain machine learning algorithms to privacy-preserving MLaaS using our building blocks.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":"6 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Patterns","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.patter.2024.101023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The complexity and cost of training machine learning models have made cloud-based machine learning as a service (MLaaS) attractive for businesses and researchers. MLaaS eliminates the need for in-house expertise by providing pre-built models and infrastructure. However, it raises data privacy and model security concerns, especially in medical fields like protein fold recognition. We propose a secure three-party computation-based MLaaS solution for privacy-preserving protein fold recognition, protecting both sequence and model privacy. Our efficient private building blocks enable complex operations privately, including addition, multiplication, multiplexer with a different methodology, most-significant bit, modulus conversion, and exact exponential operations. We demonstrate our privacy-preserving recurrent kernel network (RKN) solution, showing that it matches the performance of non-private models. Our scalability analysis indicates linear scalability with RKN parameters, making it viable for real-world deployment. This solution holds promise for converting other medical domain machine learning algorithms to privacy-preserving MLaaS using our building blocks.