Roll-to-roll fabrication of lithiophilic Sn-modified Cu mesh via chemical tin plating approach for long-cycling lithium metal batteries

IF 9.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Rare Metals Pub Date : 2024-07-22 DOI:10.1007/s12598-024-02875-7
Ke-Xin Liu, Ran Tan, Zhong Zheng, Rui-Rui Zhao, Burak Ülgüt, Xin-Ping Ai, Jiang-Feng Qian
{"title":"Roll-to-roll fabrication of lithiophilic Sn-modified Cu mesh via chemical tin plating approach for long-cycling lithium metal batteries","authors":"Ke-Xin Liu, Ran Tan, Zhong Zheng, Rui-Rui Zhao, Burak Ülgüt, Xin-Ping Ai, Jiang-Feng Qian","doi":"10.1007/s12598-024-02875-7","DOIUrl":null,"url":null,"abstract":"<p>Lithium metal, with its exceptionally high theoretical capacity, emerges as the optimal anode choice for high-energy-density rechargeable batteries. Nevertheless, the practical application of lithium metal batteries (LMBs) is constrained by issues such as lithium dendrite growth and low Coulombic efficiency (CE). Herein, a roll-to-roll approach is adopted to prepare meter-scale, lithiophilic Sn-modified Cu mesh (Sn@Cu mesh) as the current collector for long-cycle lithium metal batteries. The two-dimensional (2D) nucleation mechanism on Sn@Cu mesh electrodes promotes a uniform Li flux, facilitating the deposition of Li metal in a large granular morphology. Simultaneously, experimental and computational analyses revealed that the distribution of the electric field in the Cu mesh skeleton induces Li inward growth, thereby generating a uniform, dense composite Li anode. Moreover, the Sn@Cu mesh-Li symmetrical cell demonstrates stable cycling for over 2000 h with an ultra-low 10 mV voltage polarization. In Li||Cu half-cells, the Sn@Cu mesh electrode demonstrates stable cycling for 100 cycles at a high areal capacity of 5 mAh·cm<sup>−2</sup>, achieving a CE of 99.2%. This study introduces a simple and large-scale approach for the production of lithiophilic three-dimensional (3D) current collectors, providing more possibilities for the scalable application of Li metal batteries.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"92 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12598-024-02875-7","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium metal, with its exceptionally high theoretical capacity, emerges as the optimal anode choice for high-energy-density rechargeable batteries. Nevertheless, the practical application of lithium metal batteries (LMBs) is constrained by issues such as lithium dendrite growth and low Coulombic efficiency (CE). Herein, a roll-to-roll approach is adopted to prepare meter-scale, lithiophilic Sn-modified Cu mesh (Sn@Cu mesh) as the current collector for long-cycle lithium metal batteries. The two-dimensional (2D) nucleation mechanism on Sn@Cu mesh electrodes promotes a uniform Li flux, facilitating the deposition of Li metal in a large granular morphology. Simultaneously, experimental and computational analyses revealed that the distribution of the electric field in the Cu mesh skeleton induces Li inward growth, thereby generating a uniform, dense composite Li anode. Moreover, the Sn@Cu mesh-Li symmetrical cell demonstrates stable cycling for over 2000 h with an ultra-low 10 mV voltage polarization. In Li||Cu half-cells, the Sn@Cu mesh electrode demonstrates stable cycling for 100 cycles at a high areal capacity of 5 mAh·cm−2, achieving a CE of 99.2%. This study introduces a simple and large-scale approach for the production of lithiophilic three-dimensional (3D) current collectors, providing more possibilities for the scalable application of Li metal batteries.

Graphical abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过化学镀锡方法辊对辊制造用于长循环锂金属电池的亲锂锡改性铜网片
金属锂具有极高的理论容量,是高能量密度充电电池的最佳正极选择。然而,锂枝晶生长和库仑效率(CE)低等问题制约了锂金属电池(LMB)的实际应用。本文采用卷对卷方法制备了米级亲锂锡改性铜网(Sn@Cu mesh),作为长周期锂金属电池的集流体。Sn@Cu 网电极上的二维(2D)成核机制促进了均匀的锂通量,有利于金属锂以大颗粒形态沉积。同时,实验和计算分析表明,铜网骨架中的电场分布诱导锂向内生长,从而产生均匀、致密的复合锂阳极。此外,Sn@Cu 网状锂对称电池在 10 mV 的超低极化电压下可稳定循环超过 2000 小时。在锂||铜半电池中,锡@铜网电极在 5 mAh-cm-2 的高面值容量下可稳定循环 100 次,CE 值达到 99.2%。这项研究为生产亲锂三维(3D)集流体提供了一种简单而大规模的方法,为锂金属电池的规模化应用提供了更多可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
期刊最新文献
Multi-scale inhomogeneity and anomalous mechanical response of nanoscale metallic glass pillar by cryogenic thermal cycling Preparation and electrocatalytic performance of novel-integrated Ni-Mo sulfide electrode materials for water splitting Tailoring thermal behavior and luminous performance in LuAG:Ce films via thickness control for high-power laser lighting applications Synergistic Cu single-atoms and clusters on tubular carbon nitride for efficient photocatalytic performances Enhanced thermoelectric performance in p-type AgBiSe2 through carrier concentration optimization and valence band modification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1