Bo Chang, Yigang Wang, Yue Dai, Mingjie Du, Haoshen Zhou, Ping He
{"title":"Low-cost and stable Li1.5Al0.3Ti1.7Si0.2P2.8O12 glass–ceramics for lithium extraction from seawater","authors":"Bo Chang, Yigang Wang, Yue Dai, Mingjie Du, Haoshen Zhou, Ping He","doi":"10.1007/s10008-024-06015-0","DOIUrl":null,"url":null,"abstract":"<div><p>Rapid development of electronic and grid storage technologies based on lithium-ion batteries are leading to tight supply of lithium resources in the future. Extracting lithium from seawater can completely solve the problem of lithium resource shortage. An electro-deposition method based on a lithium superionic conductive solid-state electrolyte, Li<sub>1.5</sub>Al<sub>0.5</sub>Ge<sub>1.5</sub>(PO<sub>4</sub>)<sub>3</sub> (LAGP), has been reported to obtain metallic lithium from seawater. However, expensive LAGP increases the cost of lithium extraction, while Li<sub>1.3</sub>Al<sub>0.3</sub>Ti<sub>1.7</sub>(PO<sub>4</sub>)<sub>3</sub> (LATP) with relatively lower prices cannot meet the stable requirements. Herein, a low-cost, stable glass–ceramics, Li<sub>1.5</sub>Al<sub>0.3</sub>Ti<sub>1.7</sub>Si<sub>0.2</sub>P<sub>2.8</sub>O<sub>12</sub> (LATSP), has been prepared for lithium extraction from seawater. The LATSP glass–ceramics show good selectivity towards Li<sup>+</sup> and exhibit a high ionic conductivity of 3.98 × 10<sup>−4</sup> S cm<sup>−1</sup> at 22 °C. After soaking in simulated seawater, LATSP showed much better stability than LATP, comparable to LAGP. The resultant LATSP glass–ceramics was successfully employed in a seawater lithium extraction device, with a high lithium extraction Coulombic efficiency of 94.0%. Moreover, the LATSP exhibits an ionic conductivity of 2.80 × 10<sup>−4</sup> S cm<sup>−1</sup> and maintains a complete structure after 45 h of lithium extraction. This work presents an effective and practical Li-ion conducting membrane for lithium extraction from seawater.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Electrochemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10008-024-06015-0","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Rapid development of electronic and grid storage technologies based on lithium-ion batteries are leading to tight supply of lithium resources in the future. Extracting lithium from seawater can completely solve the problem of lithium resource shortage. An electro-deposition method based on a lithium superionic conductive solid-state electrolyte, Li1.5Al0.5Ge1.5(PO4)3 (LAGP), has been reported to obtain metallic lithium from seawater. However, expensive LAGP increases the cost of lithium extraction, while Li1.3Al0.3Ti1.7(PO4)3 (LATP) with relatively lower prices cannot meet the stable requirements. Herein, a low-cost, stable glass–ceramics, Li1.5Al0.3Ti1.7Si0.2P2.8O12 (LATSP), has been prepared for lithium extraction from seawater. The LATSP glass–ceramics show good selectivity towards Li+ and exhibit a high ionic conductivity of 3.98 × 10−4 S cm−1 at 22 °C. After soaking in simulated seawater, LATSP showed much better stability than LATP, comparable to LAGP. The resultant LATSP glass–ceramics was successfully employed in a seawater lithium extraction device, with a high lithium extraction Coulombic efficiency of 94.0%. Moreover, the LATSP exhibits an ionic conductivity of 2.80 × 10−4 S cm−1 and maintains a complete structure after 45 h of lithium extraction. This work presents an effective and practical Li-ion conducting membrane for lithium extraction from seawater.
期刊介绍:
The Journal of Solid State Electrochemistry is devoted to all aspects of solid-state chemistry and solid-state physics in electrochemistry.
The Journal of Solid State Electrochemistry publishes papers on all aspects of electrochemistry of solid compounds, including experimental and theoretical, basic and applied work. It equally publishes papers on the thermodynamics and kinetics of electrochemical reactions if at least one actively participating phase is solid. Also of interest are articles on the transport of ions and electrons in solids whenever these processes are relevant to electrochemical reactions and on the use of solid-state electrochemical reactions in the analysis of solids and their surfaces.
The journal covers solid-state electrochemistry and focusses on the following fields: mechanisms of solid-state electrochemical reactions, semiconductor electrochemistry, electrochemical batteries, accumulators and fuel cells, electrochemical mineral leaching, galvanic metal plating, electrochemical potential memory devices, solid-state electrochemical sensors, ion and electron transport in solid materials and polymers, electrocatalysis, photoelectrochemistry, corrosion of solid materials, solid-state electroanalysis, electrochemical machining of materials, electrochromism and electrochromic devices, new electrochemical solid-state synthesis.
The Journal of Solid State Electrochemistry makes the professional in research and industry aware of this swift progress and its importance for future developments and success in the above-mentioned fields.