Hydrodynamics of flow sensing in plankton

Christophe Eloy
{"title":"Hydrodynamics of flow sensing in plankton","authors":"Christophe Eloy","doi":"10.1140/epjs/s11734-024-01252-w","DOIUrl":null,"url":null,"abstract":"<p>Planktonic organisms, despite their passive drift in the ocean, exhibit complex responses to fluid flow, including escape behaviors and larval settlement detection. But what flow signals can they perceive? This paper addresses this question by considering an organism covered with sensitive cilia and immersed in a background flow. The organism is modeled as a spherical particle in Stokes flow, with cilia assumed to measure the local shear at the particle surface. This study reveals that, while these organisms can always measure certain components of the flow strain, bottom-heaviness is necessary to measure the horizontal component of vorticity. These findings shed light on flow sensing by plankton, contributing to a better understanding of their behavior.</p>","PeriodicalId":501403,"journal":{"name":"The European Physical Journal Special Topics","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Special Topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1140/epjs/s11734-024-01252-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Planktonic organisms, despite their passive drift in the ocean, exhibit complex responses to fluid flow, including escape behaviors and larval settlement detection. But what flow signals can they perceive? This paper addresses this question by considering an organism covered with sensitive cilia and immersed in a background flow. The organism is modeled as a spherical particle in Stokes flow, with cilia assumed to measure the local shear at the particle surface. This study reveals that, while these organisms can always measure certain components of the flow strain, bottom-heaviness is necessary to measure the horizontal component of vorticity. These findings shed light on flow sensing by plankton, contributing to a better understanding of their behavior.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
浮游生物流动感应的流体力学
尽管浮游生物在海洋中被动漂流,但它们对流体流动的反应非常复杂,包括逃逸行为和幼虫定居探测。但它们能感知哪些流动信号呢?本文针对这一问题,研究了一个被敏感纤毛覆盖并浸没在背景流中的生物体。生物体被模拟为斯托克斯流中的球形颗粒,纤毛被假定为测量颗粒表面的局部剪切力。这项研究发现,虽然这些生物体总能测量流动应变的某些分量,但要测量涡度的水平分量,就必须有底部高度。这些发现揭示了浮游生物的流动感应,有助于更好地理解浮游生物的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classification of sprott chaotic systems via projection of the attractors using deep learning methods Master–slave synchronization of electrocardiogram chaotic networks dealing with stochastic perturbance Approximate controllability results of $$\psi$$ -Hilfer fractional neutral hemivariational inequalities with infinite delay via almost sectorial operators Characterization of magnetic nanoparticles for magnetic particle spectroscopy-based sensitive cell quantification Jet substructure probe to freeze-in dark matter in alternative cosmological background
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1