Pub Date : 2024-09-19DOI: 10.1140/epjs/s11734-024-01303-2
N. Ramesh Babu, R. Vijay Aravind, P. Balasubramaniam
This study investigates the master–slave synchronization criteria for four-dimensional electrocardiogram (ECG) chaotic networks, focusing on the interconnecting electrical potentials in the sinoatrial and atrioventricular nodes. The model encompasses electrocardiograms from healthy hearts and those with known rhythm abnormalities such as atrial flutter, ventricular tachycardia, and ventricular flutter. For the first time, a state feedback controller is employed to address the master–slave synchronization problem of stochastic ECG chaotic networks (SECCNs) for both pathological and non-pathological heartbeats. We establish a sufficient condition based on a quadratic Lyapunov-Krasovskii functional, ensuring synchronization of the SECCNs to the desired state. Furthermore, we provide a numerical simulation to illustrate the theoretical findings.
{"title":"Master–slave synchronization of electrocardiogram chaotic networks dealing with stochastic perturbance","authors":"N. Ramesh Babu, R. Vijay Aravind, P. Balasubramaniam","doi":"10.1140/epjs/s11734-024-01303-2","DOIUrl":"https://doi.org/10.1140/epjs/s11734-024-01303-2","url":null,"abstract":"<p>This study investigates the master–slave synchronization criteria for four-dimensional electrocardiogram (ECG) chaotic networks, focusing on the interconnecting electrical potentials in the sinoatrial and atrioventricular nodes. The model encompasses electrocardiograms from healthy hearts and those with known rhythm abnormalities such as atrial flutter, ventricular tachycardia, and ventricular flutter. For the first time, a state feedback controller is employed to address the master–slave synchronization problem of stochastic ECG chaotic networks (SECCNs) for both pathological and non-pathological heartbeats. We establish a sufficient condition based on a quadratic Lyapunov-Krasovskii functional, ensuring synchronization of the SECCNs to the desired state. Furthermore, we provide a numerical simulation to illustrate the theoretical findings.</p>","PeriodicalId":501403,"journal":{"name":"The European Physical Journal Special Topics","volume":"55 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142265580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-19DOI: 10.1140/epjs/s11734-024-01329-6
Akif Akgul, Emre Deniz, Berkay Emin, Hüseyin Çizmeci, Yusuf Alaca, Ömer Faruk Akmeşe, Selim Özdem
This study uses deep learning methods to classify the projection of the attractor’s images of five different chaotic systems. The chaotic systems addressed in the research are Sprott C, Sprott F, Sprott G, Sprott H, and Sprott M. A dataset was created for classification using the projection of attractors of these five different chaotic systems. This dataset contains time series images, and the graphs are generated based on initial conditions, Runge–Kutta 4 step size, and time length. Deep learning methods such as ResNet50, ResNet50V2, VGG19, InceptionV3, MobileNetV2, and VGG16 have been utilized for classification. This study's classification accuracy varies between 91.6% and 99.9%, depending on the problem. Therefore, this research accurately determines which chaotic system a projection of the attractors graphic image belongs to. This high accuracy demonstrates the usability of this model in analyzing chaotic systems in real-world applications. Such accuracies can be considered a powerful tool in analyzing industrial systems or other systems with complex structures. This work successfully uses deep learning methods for classifying chaotic systems. Such research could be an important step toward understanding and managing complex systems.
{"title":"Classification of sprott chaotic systems via projection of the attractors using deep learning methods","authors":"Akif Akgul, Emre Deniz, Berkay Emin, Hüseyin Çizmeci, Yusuf Alaca, Ömer Faruk Akmeşe, Selim Özdem","doi":"10.1140/epjs/s11734-024-01329-6","DOIUrl":"https://doi.org/10.1140/epjs/s11734-024-01329-6","url":null,"abstract":"<p>This study uses deep learning methods to classify the projection of the attractor’s images of five different chaotic systems. The chaotic systems addressed in the research are Sprott C, Sprott F, Sprott G, Sprott H, and Sprott M. A dataset was created for classification using the projection of attractors of these five different chaotic systems. This dataset contains time series images, and the graphs are generated based on initial conditions, Runge–Kutta 4 step size, and time length. Deep learning methods such as ResNet50, ResNet50V2, VGG19, InceptionV3, MobileNetV2, and VGG16 have been utilized for classification. This study's classification accuracy varies between 91.6% and 99.9%, depending on the problem. Therefore, this research accurately determines which chaotic system a projection of the attractors graphic image belongs to. This high accuracy demonstrates the usability of this model in analyzing chaotic systems in real-world applications. Such accuracies can be considered a powerful tool in analyzing industrial systems or other systems with complex structures. This work successfully uses deep learning methods for classifying chaotic systems. Such research could be an important step toward understanding and managing complex systems.</p>","PeriodicalId":501403,"journal":{"name":"The European Physical Journal Special Topics","volume":"34 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142265579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-19DOI: 10.1140/epjs/s11734-024-01326-9
G. Gokul, R. Udhayakumar
This manuscript explains the approximate controllability of (psi)-Hilfer fractional neutral hemivariational inequalities ((psi)-HFNHVI) with infinite delay via an almost sectorial operator. The facts related to semigroup theory, Hilfer fractional derivative (HFD), fractional calculus, the fixed point approach, and multi-valued maps are used to prove the results. Initially, we show the existence of a mild solution and exhibit that the (psi)-Hilfer fractional system is approximately controllable. Further, we have provided an example.
{"title":"Approximate controllability results of $$psi$$ -Hilfer fractional neutral hemivariational inequalities with infinite delay via almost sectorial operators","authors":"G. Gokul, R. Udhayakumar","doi":"10.1140/epjs/s11734-024-01326-9","DOIUrl":"https://doi.org/10.1140/epjs/s11734-024-01326-9","url":null,"abstract":"<p>This manuscript explains the approximate controllability of <span>(psi)</span>-Hilfer fractional neutral hemivariational inequalities (<span>(psi)</span>-HFNHVI) with infinite delay via an almost sectorial operator. The facts related to semigroup theory, Hilfer fractional derivative (HFD), fractional calculus, the fixed point approach, and multi-valued maps are used to prove the results. Initially, we show the existence of a mild solution and exhibit that the <span>(psi)</span>-Hilfer fractional system is approximately controllable. Further, we have provided an example.</p>","PeriodicalId":501403,"journal":{"name":"The European Physical Journal Special Topics","volume":"96 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142265581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-16DOI: 10.1140/epjs/s11734-024-01330-z
Vladimir Khorev, Galina Portnova, Anastasia Kushnir, Larisa Mayorova
The importance of touch in human social development and interpersonal interactions is widely recognized, yet the underlying neurological processes remain relatively unexplored. To better understand these mechanisms, we analyzed functional magnetic resonance imaging (fMRI) data to investigate how affective touch influences brain activity. Our study employed independent component analysis (ICA) and cluster analysis to identify brain components that exhibit significant changes following tactile stimulation. These components were then mapped to large-scale brain networks, focusing on those with the most pronounced spatial intensity differences. Our findings highlight the crucial role of distinct brain networks in processing tactile sensations. Notably, we observed significant changes in the default mode network (DMN) activity, particularly in the control group, after the touch experiment. Additionally, specific alterations were detected in the amygdala, cuneus, and orbitofrontal cortex. This study sheds light on the neurological foundations of tactile experiences and their potential impact on behavior and emotional states. Understanding these processes could inform the development of therapeutic strategies that leverage touch to alleviate stress and enhance mental health.
{"title":"Fmri study of changes in large-scale brain networks during affective touch","authors":"Vladimir Khorev, Galina Portnova, Anastasia Kushnir, Larisa Mayorova","doi":"10.1140/epjs/s11734-024-01330-z","DOIUrl":"https://doi.org/10.1140/epjs/s11734-024-01330-z","url":null,"abstract":"<p>The importance of touch in human social development and interpersonal interactions is widely recognized, yet the underlying neurological processes remain relatively unexplored. To better understand these mechanisms, we analyzed functional magnetic resonance imaging (fMRI) data to investigate how affective touch influences brain activity. Our study employed independent component analysis (ICA) and cluster analysis to identify brain components that exhibit significant changes following tactile stimulation. These components were then mapped to large-scale brain networks, focusing on those with the most pronounced spatial intensity differences. Our findings highlight the crucial role of distinct brain networks in processing tactile sensations. Notably, we observed significant changes in the default mode network (DMN) activity, particularly in the control group, after the touch experiment. Additionally, specific alterations were detected in the amygdala, cuneus, and orbitofrontal cortex. This study sheds light on the neurological foundations of tactile experiences and their potential impact on behavior and emotional states. Understanding these processes could inform the development of therapeutic strategies that leverage touch to alleviate stress and enhance mental health.</p>","PeriodicalId":501403,"journal":{"name":"The European Physical Journal Special Topics","volume":"189 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142265585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-16DOI: 10.1140/epjs/s11734-024-01305-0
Allyson Tarifa, Eon Soo Lee, Nuggehalli M. Ravindra
In the area of photovoltaics, monocrystalline silicon solar cells are ubiquitously utilized in buildings, commercial, defense, residential, space, and transportation applications throughout the world. Their performance is impeded by the heating of the cells during their interaction with the incident solar radiation. The development of reliable computer simulations that effectively model the thermal response of monocrystalline silicon solar cells is critical for their design, fabrication, and utilization. This work employs a novel computer simulation to incorporate the optical, electrical, and thermal properties of silicon in the thermal analysis of silicon solar cells. After establishing the theoretical principles and the values of these properties, the results of the simulation are compared with other established studies. The analysis shows that the percentage difference in solar cell temperatures between simulation and literature is within a range of 0.354–0.487%. The proposed simulation shows that the visible range of wavelengths is the dominant source of heating in commercial monocrystalline silicon solar cells.
{"title":"Opto-electro-thermal simulation of heat transfer in monocrystalline silicon solar cells","authors":"Allyson Tarifa, Eon Soo Lee, Nuggehalli M. Ravindra","doi":"10.1140/epjs/s11734-024-01305-0","DOIUrl":"https://doi.org/10.1140/epjs/s11734-024-01305-0","url":null,"abstract":"<p>In the area of photovoltaics, monocrystalline silicon solar cells are ubiquitously utilized in buildings, commercial, defense, residential, space, and transportation applications throughout the world. Their performance is impeded by the heating of the cells during their interaction with the incident solar radiation. The development of reliable computer simulations that effectively model the thermal response of monocrystalline silicon solar cells is critical for their design, fabrication, and utilization. This work employs a novel computer simulation to incorporate the optical, electrical, and thermal properties of silicon in the thermal analysis of silicon solar cells. After establishing the theoretical principles and the values of these properties, the results of the simulation are compared with other established studies. The analysis shows that the percentage difference in solar cell temperatures between simulation and literature is within a range of 0.354–0.487%. The proposed simulation shows that the visible range of wavelengths is the dominant source of heating in commercial monocrystalline silicon solar cells.</p>","PeriodicalId":501403,"journal":{"name":"The European Physical Journal Special Topics","volume":"32 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142265589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-16DOI: 10.1140/epjs/s11734-024-01233-z
Saumyen Kundu, Sudipta Show, Partha Konar, Prasanta Kumar Das
The non-thermally produced freeze-in dark matter is an attractive alternative to look beyond the weakly interacting massive particle (WIMP) paradigm. With the singlet-doublet dark matter model, a simple extension to the standard model (SM), we probe the light dark matter parameter space, assuming feeble couplings between SM particles and the dark matter candidate. We tried to show how non-standard cosmological background affects dark matter production in the early Universe and alters the search strategy at colliders. We found that the prompt decay search using the jet substructure analysis is more effective than the existing displaced vertex searches.
{"title":"Jet substructure probe to freeze-in dark matter in alternative cosmological background","authors":"Saumyen Kundu, Sudipta Show, Partha Konar, Prasanta Kumar Das","doi":"10.1140/epjs/s11734-024-01233-z","DOIUrl":"https://doi.org/10.1140/epjs/s11734-024-01233-z","url":null,"abstract":"<p>The non-thermally produced freeze-in dark matter is an attractive alternative to look beyond the weakly interacting massive particle (WIMP) paradigm. With the singlet-doublet dark matter model, a simple extension to the standard model (SM), we probe the light dark matter parameter space, assuming feeble couplings between SM particles and the dark matter candidate. We tried to show how non-standard cosmological background affects dark matter production in the early Universe and alters the search strategy at colliders. We found that the prompt decay search using the jet substructure analysis is more effective than the existing displaced vertex searches.</p>","PeriodicalId":501403,"journal":{"name":"The European Physical Journal Special Topics","volume":"119 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142265583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-16DOI: 10.1140/epjs/s11734-024-01312-1
Jian Wei, Shaoqi Sun, Chun Xia, Alexey O. Ivanov, Ekaterina A. Elfimova, Chunhao Yin, Rong Cai, Shijie Sun, Lijun Xu, Jing Zhong
In the era of precision medicine, cell-based therapy is one of the most promising techniques to fight against cancer cells or for the regeneration of diseased tissues/organs. In cell-based therapy, sensitive and quantitative detection of cells is of great importance and interest to understand the behavior of the cells in vivo. Existing techniques, including magnetic resonance imaging, X-ray computed tomography and optical imaging, suffer from some limitation on sensitive cell quantification. In this paper, we report on the approach of sensitive and quantitative detection of magnetic nanoparticle (MNP)-labelled cells with magnetic particle spectroscopy (MPS). The influence of the MNP dynamics on the MPS signal of the MNPs is investigated and analyzed. Finally, the MPS signal of the MNPs is measured to quantify cell amount with a limit-of-detection of 200 and with a linearity of better than 98%. The work presented in this paper has great potential for providing a novel tool for in vivo cell detection and tracking during cell-based therapy.
{"title":"Characterization of magnetic nanoparticles for magnetic particle spectroscopy-based sensitive cell quantification","authors":"Jian Wei, Shaoqi Sun, Chun Xia, Alexey O. Ivanov, Ekaterina A. Elfimova, Chunhao Yin, Rong Cai, Shijie Sun, Lijun Xu, Jing Zhong","doi":"10.1140/epjs/s11734-024-01312-1","DOIUrl":"https://doi.org/10.1140/epjs/s11734-024-01312-1","url":null,"abstract":"<p>In the era of precision medicine, cell-based therapy is one of the most promising techniques to fight against cancer cells or for the regeneration of diseased tissues/organs. In cell-based therapy, sensitive and quantitative detection of cells is of great importance and interest to understand the behavior of the cells in vivo. Existing techniques, including magnetic resonance imaging, X-ray computed tomography and optical imaging, suffer from some limitation on sensitive cell quantification. In this paper, we report on the approach of sensitive and quantitative detection of magnetic nanoparticle (MNP)-labelled cells with magnetic particle spectroscopy (MPS). The influence of the MNP dynamics on the MPS signal of the MNPs is investigated and analyzed. Finally, the MPS signal of the MNPs is measured to quantify cell amount with a limit-of-detection of 200 and with a linearity of better than 98%. The work presented in this paper has great potential for providing a novel tool for in vivo cell detection and tracking during cell-based therapy.</p>","PeriodicalId":501403,"journal":{"name":"The European Physical Journal Special Topics","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142265582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-16DOI: 10.1140/epjs/s11734-024-01319-8
A. M. Obalalu, S. H. A. M. Shah, Adil Darvesh, Umair Khan, Anuar Ishak, Peter Adegbite, O. B. Ojewola, Taseer Muhammad, Ahmed M. Galal
The present article is designed to study the Hamilton and Crosser model applied to the flow of ternary hybrid nanofluids over a Riga wedge, incorporating the effects of heterogeneous catalytic reactions. The complex interactions within the ternary hybrid nanofluids, comprising three distinct nanoparticles suspended in a base fluid, present significant challenges in accurately predicting flow and thermal characteristics. The Hamilton and Crosser model, known for its efficacy in determining the thermal conductivity of composite materials, is employed to analyze this intricate system. The analysis reveals the model's potential in offering a comprehensive understanding of the thermal and fluid dynamics involved, highlighting its suitability for predicting the behavior of ternary hybrid nanofluids in the presence of catalytic reactions. The governing model equations and boundary conditions are non-dimensionalized by introducing suitable similarity transformations. Thereafter, the computational Chebyshev collocation spectral technique implemented in the MATHEMATICA 11.3 software is used to calculate the numerical solution. The study reveals that the Casson parameter has a negative influence on the velocity distribution, causing it to reduce as the Casson parameter rises. This research contributes to the advancement of modeling techniques for complex fluid systems, with implications for enhanced design and optimization in various industrial and engineering applications.
{"title":"Insight into the Hamilton and Crosser model for ternary hybrid nanofluid flow over a Riga wedge with heterogeneous catalytic reaction","authors":"A. M. Obalalu, S. H. A. M. Shah, Adil Darvesh, Umair Khan, Anuar Ishak, Peter Adegbite, O. B. Ojewola, Taseer Muhammad, Ahmed M. Galal","doi":"10.1140/epjs/s11734-024-01319-8","DOIUrl":"https://doi.org/10.1140/epjs/s11734-024-01319-8","url":null,"abstract":"<p>The present article is designed to study the Hamilton and Crosser model applied to the flow of ternary hybrid nanofluids over a Riga wedge, incorporating the effects of heterogeneous catalytic reactions. The complex interactions within the ternary hybrid nanofluids, comprising three distinct nanoparticles suspended in a base fluid, present significant challenges in accurately predicting flow and thermal characteristics. The Hamilton and Crosser model, known for its efficacy in determining the thermal conductivity of composite materials, is employed to analyze this intricate system. The analysis reveals the model's potential in offering a comprehensive understanding of the thermal and fluid dynamics involved, highlighting its suitability for predicting the behavior of ternary hybrid nanofluids in the presence of catalytic reactions. The governing model equations and boundary conditions are non-dimensionalized by introducing suitable similarity transformations. Thereafter, the computational Chebyshev collocation spectral technique implemented in the MATHEMATICA 11.3 software is used to calculate the numerical solution. The study reveals that the Casson parameter has a negative influence on the velocity distribution, causing it to reduce as the Casson parameter rises. This research contributes to the advancement of modeling techniques for complex fluid systems, with implications for enhanced design and optimization in various industrial and engineering applications.</p>","PeriodicalId":501403,"journal":{"name":"The European Physical Journal Special Topics","volume":"32 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142269669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-13DOI: 10.1140/epjs/s11734-024-01327-8
Santanu Kumar Dash, Santanu Koley
The present study investigates the scattering of ocean wave and currents by an inverted T-type lightweight surface-piercing wave barrier that is situated over a uniform sea bed. To handle the boundary value problem (BVP), an iterative boundary element method (BEM) has been used. To analyze the efficacy of employing thin wave barriers, the impact of porosity, relative submergence depth and width of the barrier on the hydrodynamic properties (like wave force, reflection, dissipation, and transmission) are investigated in the presence of ocean currents. The simulated outcomes demonstrate that the Doppler Shift effect of the frequency due to the presence of ocean currents significantly influences the behaviour of the aforementioned hydrodynamic properties. Moreover, these simulated results also demonstrate that the use of lightweight wave barriers provides a better wave energy dissipation compared to the bulky submerged structures.
本研究探讨了位于均匀海床上的倒 T 型轻质穿面波障对海浪和海流的散射。为处理边界值问题(BVP),采用了迭代边界元法(BEM)。为了分析采用薄波屏障的效果,研究了在洋流存在的情况下,屏障的孔隙率、相对浸没深度和宽度对流体动力特性(如波力、反射、耗散和传输)的影响。模拟结果表明,洋流导致的频率多普勒频移效应极大地影响了上述水动力特性的表现。此外,这些模拟结果还表明,与笨重的水下结构相比,使用轻质挡浪板能更好地消散波浪能量。
{"title":"Iterative boundary element method for modeling an inverted T-type porous barrier in presence of ocean currents","authors":"Santanu Kumar Dash, Santanu Koley","doi":"10.1140/epjs/s11734-024-01327-8","DOIUrl":"https://doi.org/10.1140/epjs/s11734-024-01327-8","url":null,"abstract":"<p>The present study investigates the scattering of ocean wave and currents by an inverted T-type lightweight surface-piercing wave barrier that is situated over a uniform sea bed. To handle the boundary value problem (BVP), an iterative boundary element method (BEM) has been used. To analyze the efficacy of employing thin wave barriers, the impact of porosity, relative submergence depth and width of the barrier on the hydrodynamic properties (like wave force, reflection, dissipation, and transmission) are investigated in the presence of ocean currents. The simulated outcomes demonstrate that the Doppler Shift effect of the frequency due to the presence of ocean currents significantly influences the behaviour of the aforementioned hydrodynamic properties. Moreover, these simulated results also demonstrate that the use of lightweight wave barriers provides a better wave energy dissipation compared to the bulky submerged structures.</p>","PeriodicalId":501403,"journal":{"name":"The European Physical Journal Special Topics","volume":"182 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Left ventricular assist devices (LVADs) have proven to be the best alternative treatment to address the increasing number of heart failures, while donors are in short supply. However, ventricular assist devices (VADs) have been linked to thrombosis, hemolysis, and other postoperative complications. Despite significant technological advancements, blood damage caused by high shear stress generation has remained a serious concern, which is greatly attributed to the VAD's geometry. The goal of this research is to develop a centrifugal pump design using computational fluid dynamics (CFD) and experimental evaluation. Based on characteristics such as pressure head generation, flow rate, maximum wall shear stress, and hydraulic efficiency, the simulations produce a pump design suitable for mechanical circulatory support. The subsequent experimental testing for pressure head and flow rates validate the CFD outcomes. Further, the pump is installed in an indigenously designed mock circulation loop to examine its capability as an LVAD. The outcomes of CFD and experimental studies reveal that the developed pump is well capable of delivering blood with a flow rate at the required pressure as per desired physiological requirements. Also, the wall shear stress values are within the limit (< 300 N/m2) to avoid any blood damage.
左心室辅助装置(LVAD)已被证明是解决日益增多的心力衰竭患者的最佳替代治疗方法,而供体却供不应求。然而,心室辅助装置(VAD)与血栓形成、溶血和其他术后并发症有关。尽管在技术上取得了重大进步,但高剪切应力造成的血液损伤仍是一个令人严重关切的问题,而这在很大程度上要归咎于 VAD 的几何形状。本研究的目标是利用计算流体动力学(CFD)和实验评估开发一种离心泵设计。根据产生的压头、流量、最大壁面剪应力和水力效率等特性,模拟得出了适合机械循环支持的泵设计。随后的压头和流速实验测试验证了 CFD 的结果。此外,该泵还被安装在一个自主设计的模拟循环回路中,以检验其作为 LVAD 的能力。CFD 和实验研究结果表明,所开发的泵能以所需的压力和流量输送血液,符合预期的生理要求。此外,壁剪应力值也在限制范围内(300 N/m2),可避免任何血液损伤。
{"title":"Development of a centrifugal flow left ventricular assist device through hydrodynamic simulation and in vitro experimentation","authors":"Pulak Kumar Ray, Sumanta Laha, Arup Kumar Das, Prasanta Kumar Das","doi":"10.1140/epjs/s11734-024-01315-y","DOIUrl":"https://doi.org/10.1140/epjs/s11734-024-01315-y","url":null,"abstract":"<p>Left ventricular assist devices (LVADs) have proven to be the best alternative treatment to address the increasing number of heart failures, while donors are in short supply. However, ventricular assist devices (VADs) have been linked to thrombosis, hemolysis, and other postoperative complications. Despite significant technological advancements, blood damage caused by high shear stress generation has remained a serious concern, which is greatly attributed to the VAD's geometry. The goal of this research is to develop a centrifugal pump design using computational fluid dynamics (CFD) and experimental evaluation. Based on characteristics such as pressure head generation, flow rate, maximum wall shear stress, and hydraulic efficiency, the simulations produce a pump design suitable for mechanical circulatory support. The subsequent experimental testing for pressure head and flow rates validate the CFD outcomes. Further, the pump is installed in an indigenously designed mock circulation loop to examine its capability as an LVAD. The outcomes of CFD and experimental studies reveal that the developed pump is well capable of delivering blood with a flow rate at the required pressure as per desired physiological requirements. Also, the wall shear stress values are within the limit (< 300 N/m<sup>2</sup>) to avoid any blood damage.</p>","PeriodicalId":501403,"journal":{"name":"The European Physical Journal Special Topics","volume":"13 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}