Machine learning in high energy physics: a review of heavy-flavor jet tagging at the LHC

Spandan Mondal, Luca Mastrolorenzo
{"title":"Machine learning in high energy physics: a review of heavy-flavor jet tagging at the LHC","authors":"Spandan Mondal, Luca Mastrolorenzo","doi":"10.1140/epjs/s11734-024-01234-y","DOIUrl":null,"url":null,"abstract":"<p>The application of machine learning (ML) in high energy physics (HEP), specifically in heavy-flavor jet tagging at Large Hadron Collider (LHC) experiments, has experienced remarkable growth and innovation in the past decade. This review provides a detailed examination of current and past ML techniques in this domain. It starts by exploring various data representation methods and ML architectures, encompassing traditional ML algorithms and advanced deep learning techniques. Subsequent sections discuss specific instances of successful ML applications in jet flavor tagging in the ATLAS and CMS experiments at the LHC, ranging from basic fully-connected layers to graph neural networks employing attention mechanisms. To systematically categorize the advancements over the LHC’s three runs, the paper classifies jet tagging algorithms into three generations, each characterized by specific data representation techniques and ML architectures. This classification aims to provide an overview of the chronological evolution in this field. Finally, a brief discussion about anticipated future developments and potential research directions in the field is presented.</p>","PeriodicalId":501403,"journal":{"name":"The European Physical Journal Special Topics","volume":"81 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Special Topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1140/epjs/s11734-024-01234-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The application of machine learning (ML) in high energy physics (HEP), specifically in heavy-flavor jet tagging at Large Hadron Collider (LHC) experiments, has experienced remarkable growth and innovation in the past decade. This review provides a detailed examination of current and past ML techniques in this domain. It starts by exploring various data representation methods and ML architectures, encompassing traditional ML algorithms and advanced deep learning techniques. Subsequent sections discuss specific instances of successful ML applications in jet flavor tagging in the ATLAS and CMS experiments at the LHC, ranging from basic fully-connected layers to graph neural networks employing attention mechanisms. To systematically categorize the advancements over the LHC’s three runs, the paper classifies jet tagging algorithms into three generations, each characterized by specific data representation techniques and ML architectures. This classification aims to provide an overview of the chronological evolution in this field. Finally, a brief discussion about anticipated future developments and potential research directions in the field is presented.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高能物理中的机器学习:大型强子对撞机重味射流标记回顾
机器学习(ML)在高能物理(HEP)中的应用,特别是在大型强子对撞机(LHC)实验的重味射流标记中的应用,在过去十年中经历了显著的增长和创新。这篇综述详细分析了该领域当前和过去的 ML 技术。文章首先探讨了各种数据表示方法和 ML 架构,包括传统的 ML 算法和先进的深度学习技术。随后的章节讨论了在大型强子对撞机的 ATLAS 和 CMS 实验中成功应用 ML 的具体实例,包括从基本的全连接层到采用注意机制的图神经网络。为了对大型强子对撞机三次运行的进展进行系统分类,本文将喷流标记算法分为三代,每一代都以特定的数据表示技术和 ML 架构为特征。这种分类旨在提供该领域按时间顺序演变的概况。最后,本文简要讨论了该领域的预期未来发展和潜在研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classification of sprott chaotic systems via projection of the attractors using deep learning methods Master–slave synchronization of electrocardiogram chaotic networks dealing with stochastic perturbance Approximate controllability results of $$\psi$$ -Hilfer fractional neutral hemivariational inequalities with infinite delay via almost sectorial operators Characterization of magnetic nanoparticles for magnetic particle spectroscopy-based sensitive cell quantification Jet substructure probe to freeze-in dark matter in alternative cosmological background
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1