{"title":"New viruses are inevitable; pandemics are optional—Lessons for and from statistics","authors":"James Nicholson, Jim Ridgway","doi":"10.1111/test.12379","DOIUrl":null,"url":null,"abstract":"We explore ways in which statistics can be used to understand disease spread and support decision‐making by governments. “Past performance does not guarantee future results”—we hope. We discuss and show examples from the National Science Foundation (NSF)‐funded COVID‐Inspired Data Science Education through Epidemiology (CIDSEE) project. Throughout, the emphasis is on the relationships between evidence, modeling and theorizing, and appropriate action. Statistics should be an essential element in all these aspects. We point to some “big statistical ideas” that underpin the whole process of modeling, which can be illustrated vividly in the context of pandemics. We argue that statistics education should emphasize the application of statistics in practical situations, and that many curricula do not equip students to use their understandings of statistics outside the classroom. We offer a framework for curriculum analysis and point to some rich teaching resources.","PeriodicalId":43739,"journal":{"name":"Teaching Statistics","volume":"82 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Teaching Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/test.12379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0
Abstract
We explore ways in which statistics can be used to understand disease spread and support decision‐making by governments. “Past performance does not guarantee future results”—we hope. We discuss and show examples from the National Science Foundation (NSF)‐funded COVID‐Inspired Data Science Education through Epidemiology (CIDSEE) project. Throughout, the emphasis is on the relationships between evidence, modeling and theorizing, and appropriate action. Statistics should be an essential element in all these aspects. We point to some “big statistical ideas” that underpin the whole process of modeling, which can be illustrated vividly in the context of pandemics. We argue that statistics education should emphasize the application of statistics in practical situations, and that many curricula do not equip students to use their understandings of statistics outside the classroom. We offer a framework for curriculum analysis and point to some rich teaching resources.