An improved honey badger algorithm for global optimization and multilevel thresholding segmentation: real case with brain tumor images

Essam H. Houssein, Marwa M. Emam, Narinder Singh, Nagwan Abdel Samee, Maali Alabdulhafith, Emre Çelik
{"title":"An improved honey badger algorithm for global optimization and multilevel thresholding segmentation: real case with brain tumor images","authors":"Essam H. Houssein, Marwa M. Emam, Narinder Singh, Nagwan Abdel Samee, Maali Alabdulhafith, Emre Çelik","doi":"10.1007/s10586-024-04525-0","DOIUrl":null,"url":null,"abstract":"<p>Global optimization and biomedical image segmentation are crucial in diverse scientific and medical fields. The Honey Badger Algorithm (HBA) is a newly developed metaheuristic that draws inspiration from the foraging behavior of honey badgers. Similar to other metaheuristic algorithms, HBA encounters difficulties associated with exploitation, being trapped in local optima, and the pace at which it converges. This study aims to improve the performance of the original HBA by implementing the Enhanced Solution Quality (ESQ) method. This strategy helps to prevent becoming stuck in local optima and speeds up the convergence process. We conducted an assessment of the enhanced algorithm, mHBA, by utilizing a comprehensive collection of benchmark functions from IEEE CEC’2020. In this evaluation, we compared mHBA with well-established metaheuristic algorithms. mHBA demonstrates exceptional performance, as shown by both qualitative and quantitative assessments. Our study not only focuses on global optimization but also investigates the field of biomedical image segmentation, which is a crucial process in numerous applications involving digital image analysis and comprehension. We specifically focus on the problem of multi-level thresholding (MT) for medical image segmentation, which is a difficult process that becomes more challenging as the number of thresholds needed increases. In order to tackle this issue, we suggest a revised edition of the standard HBA, known as mHBA, which utilizes the ESQ approach. We utilized this methodology for the segmentation of Magnetic Resonance Images (MRI). The evaluation of mHBA utilizes existing metrics to gauge the quality and performance of its segmentation. This evaluation showcases the resilience of mHBA in comparison to many established optimization algorithms, emphasizing the effectiveness of the suggested technique.</p>","PeriodicalId":501576,"journal":{"name":"Cluster Computing","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10586-024-04525-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Global optimization and biomedical image segmentation are crucial in diverse scientific and medical fields. The Honey Badger Algorithm (HBA) is a newly developed metaheuristic that draws inspiration from the foraging behavior of honey badgers. Similar to other metaheuristic algorithms, HBA encounters difficulties associated with exploitation, being trapped in local optima, and the pace at which it converges. This study aims to improve the performance of the original HBA by implementing the Enhanced Solution Quality (ESQ) method. This strategy helps to prevent becoming stuck in local optima and speeds up the convergence process. We conducted an assessment of the enhanced algorithm, mHBA, by utilizing a comprehensive collection of benchmark functions from IEEE CEC’2020. In this evaluation, we compared mHBA with well-established metaheuristic algorithms. mHBA demonstrates exceptional performance, as shown by both qualitative and quantitative assessments. Our study not only focuses on global optimization but also investigates the field of biomedical image segmentation, which is a crucial process in numerous applications involving digital image analysis and comprehension. We specifically focus on the problem of multi-level thresholding (MT) for medical image segmentation, which is a difficult process that becomes more challenging as the number of thresholds needed increases. In order to tackle this issue, we suggest a revised edition of the standard HBA, known as mHBA, which utilizes the ESQ approach. We utilized this methodology for the segmentation of Magnetic Resonance Images (MRI). The evaluation of mHBA utilizes existing metrics to gauge the quality and performance of its segmentation. This evaluation showcases the resilience of mHBA in comparison to many established optimization algorithms, emphasizing the effectiveness of the suggested technique.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于全局优化和多级阈值分割的改进型蜜獾算法:脑肿瘤图像的实际案例
全局优化和生物医学图像分割在各种科学和医学领域都至关重要。蜜獾算法(HBA)是从蜜獾的觅食行为中汲取灵感而新开发的元启发式算法。与其他元启发式算法类似,蜜獾算法在利用、陷入局部最优以及收敛速度等方面也遇到了困难。本研究旨在通过实施增强解质量(ESQ)方法来提高原始 HBA 的性能。这一策略有助于防止陷入局部最优状态,并加快收敛过程。我们利用 IEEE CEC'2020 的一系列基准函数对增强算法 mHBA 进行了评估。在评估中,我们将 mHBA 与成熟的元启发式算法进行了比较。mHBA 在定性和定量评估中都表现出了卓越的性能。我们的研究不仅关注全局优化,而且还调查了生物医学图像分割领域,这是涉及数字图像分析和理解的众多应用中的一个关键过程。我们特别关注用于医学图像分割的多级阈值(MT)问题,这是一个困难的过程,随着所需的阈值数量的增加而变得更具挑战性。为了解决这个问题,我们提出了一种利用 ESQ 方法的标准 HBA 修订版,即 mHBA。我们将这种方法用于磁共振成像(MRI)的分割。对 mHBA 的评估利用现有指标来衡量其分割的质量和性能。与许多成熟的优化算法相比,该评估展示了 mHBA 的适应能力,强调了所建议技术的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantitative and qualitative similarity measure for data clustering analysis OntoXAI: a semantic web rule language approach for explainable artificial intelligence Multi-threshold image segmentation using a boosted whale optimization: case study of breast invasive ductal carcinomas PSO-ACO-based bi-phase lightweight intrusion detection system combined with GA optimized ensemble classifiers A scalable and power efficient MAC protocol with adaptive TDMA for M2M communication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1