{"title":"Model-Free Fast Frequency Support of Wind Farms for Tracking Optimal Frequency Trajectory","authors":"Yubo Zhang;Songhao Yang;Zhiguo Hao;Baohui Zhang","doi":"10.1109/TSTE.2024.3430972","DOIUrl":null,"url":null,"abstract":"The fast frequency support (FFS) towards frequency trajectory optimization provides a system view for the frequency regulation of wind farms (WFs). However, the existing frequency trajectory optimization-based FFS generally relies on the accurate governor dynamics model of synchronous generators (SGs), which aggrandizes the difficulty of controller implementation. In this paper, a proportional-integral (PI) based FFS of WFs is designed for tracking the optimal frequency trajectory, which gets rid of the dependence on the governor model. Firstly, the prototypical PI-based FFS of WFs is proposed and its feasibility for tracking the optimal frequency trajectory is analyzed and demonstrated. Then, based on the “frequency-RoCoF” form of the optimal frequency trajectory, a more practical PI controller is constructed, avoiding the time dependence of the prototypical PI controller. Besides, an adaptive gain associated with PI parameters is designed for multi-WF coordination. Finally, the validity of the proposed method is verified in both the single-WF system and the multi-WF system.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"15 4","pages":"2638-2650"},"PeriodicalIF":8.6000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10605103/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The fast frequency support (FFS) towards frequency trajectory optimization provides a system view for the frequency regulation of wind farms (WFs). However, the existing frequency trajectory optimization-based FFS generally relies on the accurate governor dynamics model of synchronous generators (SGs), which aggrandizes the difficulty of controller implementation. In this paper, a proportional-integral (PI) based FFS of WFs is designed for tracking the optimal frequency trajectory, which gets rid of the dependence on the governor model. Firstly, the prototypical PI-based FFS of WFs is proposed and its feasibility for tracking the optimal frequency trajectory is analyzed and demonstrated. Then, based on the “frequency-RoCoF” form of the optimal frequency trajectory, a more practical PI controller is constructed, avoiding the time dependence of the prototypical PI controller. Besides, an adaptive gain associated with PI parameters is designed for multi-WF coordination. Finally, the validity of the proposed method is verified in both the single-WF system and the multi-WF system.
期刊介绍:
The IEEE Transactions on Sustainable Energy serves as a pivotal platform for sharing groundbreaking research findings on sustainable energy systems, with a focus on their seamless integration into power transmission and/or distribution grids. The journal showcases original research spanning the design, implementation, grid-integration, and control of sustainable energy technologies and systems. Additionally, the Transactions warmly welcomes manuscripts addressing the design, implementation, and evaluation of power systems influenced by sustainable energy systems and devices.