首页 > 最新文献

IEEE Transactions on Sustainable Energy最新文献

英文 中文
IEEE Industry Applications Society Information IEEE工业应用学会信息
IF 1 1区 工程技术 Q1 ENERGY & FUELS Pub Date : 2025-09-29 DOI: 10.1109/TSTE.2025.3606325
{"title":"IEEE Industry Applications Society Information","authors":"","doi":"10.1109/TSTE.2025.3606325","DOIUrl":"https://doi.org/10.1109/TSTE.2025.3606325","url":null,"abstract":"","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"16 4","pages":"C3-C3"},"PeriodicalIF":10.0,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11184414","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145183967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
2025 Index IEEE Transactions on Sustainable Energy 2025年IEEE可持续能源学报
IF 1 1区 工程技术 Q1 ENERGY & FUELS Pub Date : 2025-09-29 DOI: 10.1109/TSTE.2025.3611459
{"title":"2025 Index IEEE Transactions on Sustainable Energy","authors":"","doi":"10.1109/TSTE.2025.3611459","DOIUrl":"https://doi.org/10.1109/TSTE.2025.3611459","url":null,"abstract":"","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"16 4","pages":"3128-3186"},"PeriodicalIF":10.0,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11184401","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145183962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Sustainable Energy Information for Authors IEEE可持续能源信息汇刊
IF 1 1区 工程技术 Q1 ENERGY & FUELS Pub Date : 2025-09-29 DOI: 10.1109/TSTE.2025.3606327
{"title":"IEEE Transactions on Sustainable Energy Information for Authors","authors":"","doi":"10.1109/TSTE.2025.3606327","DOIUrl":"https://doi.org/10.1109/TSTE.2025.3606327","url":null,"abstract":"","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"16 4","pages":"C4-C4"},"PeriodicalIF":10.0,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11184412","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145183960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Collabratec IEEE Collabratec
IF 8.6 1区 工程技术 Q1 ENERGY & FUELS Pub Date : 2025-06-20 DOI: 10.1109/TSTE.2025.3576563
{"title":"IEEE Collabratec","authors":"","doi":"10.1109/TSTE.2025.3576563","DOIUrl":"https://doi.org/10.1109/TSTE.2025.3576563","url":null,"abstract":"","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"16 3","pages":"2268-2268"},"PeriodicalIF":8.6,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11045649","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144329503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Sustainable Energy Publication Information IEEE可持续能源学报出版信息
IF 8.6 1区 工程技术 Q1 ENERGY & FUELS Pub Date : 2025-06-20 DOI: 10.1109/TSTE.2025.3576553
{"title":"IEEE Transactions on Sustainable Energy Publication Information","authors":"","doi":"10.1109/TSTE.2025.3576553","DOIUrl":"https://doi.org/10.1109/TSTE.2025.3576553","url":null,"abstract":"","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"16 3","pages":"C2-C2"},"PeriodicalIF":8.6,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11045567","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144330322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Sustainable Energy Information for Authors IEEE可持续能源信息汇刊
IF 8.6 1区 工程技术 Q1 ENERGY & FUELS Pub Date : 2025-06-20 DOI: 10.1109/TSTE.2025.3576557
{"title":"IEEE Transactions on Sustainable Energy Information for Authors","authors":"","doi":"10.1109/TSTE.2025.3576557","DOIUrl":"https://doi.org/10.1109/TSTE.2025.3576557","url":null,"abstract":"","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"16 3","pages":"C4-C4"},"PeriodicalIF":8.6,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11045648","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144331596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Industry Applications Society Information IEEE工业应用学会信息
IF 8.6 1区 工程技术 Q1 ENERGY & FUELS Pub Date : 2025-06-20 DOI: 10.1109/TSTE.2025.3576555
{"title":"IEEE Industry Applications Society Information","authors":"","doi":"10.1109/TSTE.2025.3576555","DOIUrl":"https://doi.org/10.1109/TSTE.2025.3576555","url":null,"abstract":"","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"16 3","pages":"C3-C3"},"PeriodicalIF":8.6,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11045650","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144331677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Share Your Preprint Research with the World! 与世界分享你的预印本研究!
IF 8.6 1区 工程技术 Q1 ENERGY & FUELS Pub Date : 2025-06-20 DOI: 10.1109/TSTE.2025.3576561
{"title":"Share Your Preprint Research with the World!","authors":"","doi":"10.1109/TSTE.2025.3576561","DOIUrl":"https://doi.org/10.1109/TSTE.2025.3576561","url":null,"abstract":"","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"16 3","pages":"2267-2267"},"PeriodicalIF":8.6,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11045651","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144331595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Region of Attraction Estimation for Power Systems With Multiple Integrated DFIG-Based Wind Turbines 多台集成dfig风电机组电力系统的吸引力区域估计
IF 1 1区 工程技术 Q1 ENERGY & FUELS Pub Date : 2025-06-12 DOI: 10.1109/TSTE.2025.3579018
Yang Liu;Huanjin Yao;Pengyu Di;Yingjie Qin;Yiming Ma;Mohammed Alkahtani;Yihua Hu
The lack of suitable modeling methods for power systems with multiple doubly-fed induction generator-based wind turbines (DFIGWTs) integrated has left the analytical description of the boundary of the region of attraction (ROA) of such systems largely unexplored. To address this gap, this paper derives an ordinary differential equation (ODE) model for a power system with multiple DFIGWTs integrated. The proposed electromechanical model is validated in a single-machine-infinite-bus (SMIB) power system and a modified 3 machine 9 bus power system with root mean squared errors (RMSEs) of less than 9.5% for trajectory comparisons with the full model, demonstrating that it accurately captures the low-frequency dynamics of the full DFIGWT model. Subsequently, the ODE model is transformed into a polynomial differential-algebraic equation (DAE) model using a nonlinear coordinate transformation. To estimate the ROA, an enhanced expanding interior algorithm (EIA) based on sum of squares (SOS) programming is applied. The feasibility of the proposed model, along with the appropriate conservativeness of the improved EIA, is validated using two test systems that include multiple DFIGWTs and synchronous generators (SGs). By comparison, it is found that the time cost of the improved EIA is reduced by around 17% while maintaining the accuracy. These results demonstrate that the proposed approach has significant practical implications for the integration of wind farms into power systems, and offers an efficient tool for transient stability analysis.
对于集成了多个双馈感应式风力发电机(DFIGWTs)的电力系统,由于缺乏合适的建模方法,使得这类系统的吸引力区域(ROA)边界的分析描述在很大程度上未被探索。为了解决这一问题,本文导出了一个集成了多个DFIGWTs的电力系统的常微分方程(ODE)模型。本文提出的机电模型在单机无限母线(SMIB)电力系统和改进的3机9母线电力系统中进行了验证,与完整模型进行了轨迹比较,均方根误差(rmse)小于9.5%,表明该模型准确捕获了完整DFIGWT模型的低频动态。随后,利用非线性坐标变换将ODE模型转化为多项式微分代数方程(DAE)模型。为了估计ROA,采用了一种基于平方和规划的增强扩展内扩算法(EIA)。通过两个测试系统(包括多个DFIGWTs和同步发电机(SGs))验证了所提出模型的可行性,以及改进的EIA的适当保守性。通过比较发现,改进后的EIA在保持精度的情况下,时间成本降低了17%左右。这些结果表明,所提出的方法对将风电场整合到电力系统中具有重要的实际意义,并为暂态稳定性分析提供了有效的工具。
{"title":"Region of Attraction Estimation for Power Systems With Multiple Integrated DFIG-Based Wind Turbines","authors":"Yang Liu;Huanjin Yao;Pengyu Di;Yingjie Qin;Yiming Ma;Mohammed Alkahtani;Yihua Hu","doi":"10.1109/TSTE.2025.3579018","DOIUrl":"https://doi.org/10.1109/TSTE.2025.3579018","url":null,"abstract":"The lack of suitable modeling methods for power systems with multiple doubly-fed induction generator-based wind turbines (DFIGWTs) integrated has left the analytical description of the boundary of the region of attraction (ROA) of such systems largely unexplored. To address this gap, this paper derives an ordinary differential equation (ODE) model for a power system with multiple DFIGWTs integrated. The proposed electromechanical model is validated in a single-machine-infinite-bus (SMIB) power system and a modified 3 machine 9 bus power system with root mean squared errors (RMSEs) of less than 9.5% for trajectory comparisons with the full model, demonstrating that it accurately captures the low-frequency dynamics of the full DFIGWT model. Subsequently, the ODE model is transformed into a polynomial differential-algebraic equation (DAE) model using a nonlinear coordinate transformation. To estimate the ROA, an enhanced expanding interior algorithm (EIA) based on sum of squares (SOS) programming is applied. The feasibility of the proposed model, along with the appropriate conservativeness of the improved EIA, is validated using two test systems that include multiple DFIGWTs and synchronous generators (SGs). By comparison, it is found that the time cost of the improved EIA is reduced by around 17% while maintaining the accuracy. These results demonstrate that the proposed approach has significant practical implications for the integration of wind farms into power systems, and offers an efficient tool for transient stability analysis.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"16 4","pages":"3095-3109"},"PeriodicalIF":10.0,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145183408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extreme Probabilistic Solar Power Prediction via Localized Sample Structure Recognition and Generalized Error Estimation 基于局部样本结构识别和广义误差估计的太阳能发电极值概率预测
IF 1 1区 工程技术 Q1 ENERGY & FUELS Pub Date : 2025-06-12 DOI: 10.1109/TSTE.2025.3579335
Jiacheng Liu;Jun Liu;Xinglei Liu;Tao Ding;Guangyao Wang;Xiaoming Liu;Yu Zhao
The fluctuations and uncertainty of solar power constantly threaten the secure operation and economic dispatch of power systems. Existing end-to-end point or probabilistic solar power prediction methods mostly lack effective integration of the two approaches, and the latent error caused by machine learning (ML) techniques is rarely taken into consideration. Hence in this paper, a combined extreme probabilistic solar power prediction (EPSPP) scheme is proposed, by integrating point forecasting with extreme error estimation. Firstly, the localized sample structure recognition (LSSR) is conducted to determine the neighborhood of meteorological conditions, where feature weights of Euclidean distance measurement are allocated with respect to the valid mutual information (MI) derived by two-dimensional diffusion kernel density estimation (2D-DKDE). Secondly, with the neighborhood generated by LSSR, an improved localized generalization error estimation (ILGEE) algorithm is put forward to infer the real-time maximal second-order origin moment of solar power point forecasting error corresponding to designated confidence levels. Finally, the solar power at each temporal moment is deduced as distinct Gaussian distributions, by modifying the mean value and variance according to statistical principles. For the sake of the so-called “extreme”, the proposed scheme could maintain reliability even under circumstances of the worst ML model precision. Cases from a real-world solar power station in Oregon, USA, are used to validate its effectiveness.
太阳能发电的波动和不确定性不断威胁着电力系统的安全运行和经济调度。现有的端到端点或概率太阳能预测方法大多缺乏两种方法的有效集成,并且很少考虑机器学习(ML)技术引起的潜在误差。为此,本文提出了一种将点预测与极值误差估计相结合的组合极值概率太阳能发电预测方案。首先,根据二维扩散核密度估计(2D-DKDE)得到的有效互信息(MI)分配欧氏距离测量的特征权值,进行局部样本结构识别(LSSR),确定气象条件的邻域;其次,利用LSSR生成的邻域,提出了一种改进的局部泛化误差估计(ILGEE)算法,实时推断出指定置信水平对应的太阳能发电点预测误差的最大二阶原点矩;最后,根据统计原理,通过对均值和方差的修正,推导出各时刻的太阳能功率为不同的高斯分布。为了达到所谓的“极致”,所提出的方案即使在ML模型精度最差的情况下也能保持可靠性。以美国俄勒冈州的一个真实太阳能电站为例,验证了其有效性。
{"title":"Extreme Probabilistic Solar Power Prediction via Localized Sample Structure Recognition and Generalized Error Estimation","authors":"Jiacheng Liu;Jun Liu;Xinglei Liu;Tao Ding;Guangyao Wang;Xiaoming Liu;Yu Zhao","doi":"10.1109/TSTE.2025.3579335","DOIUrl":"https://doi.org/10.1109/TSTE.2025.3579335","url":null,"abstract":"The fluctuations and uncertainty of solar power constantly threaten the secure operation and economic dispatch of power systems. Existing end-to-end point or probabilistic solar power prediction methods mostly lack effective integration of the two approaches, and the latent error caused by machine learning (ML) techniques is rarely taken into consideration. Hence in this paper, a combined extreme probabilistic solar power prediction (EPSPP) scheme is proposed, by integrating point forecasting with extreme error estimation. Firstly, the localized sample structure recognition (LSSR) is conducted to determine the neighborhood of meteorological conditions, where feature weights of Euclidean distance measurement are allocated with respect to the valid mutual information (MI) derived by two-dimensional diffusion kernel density estimation (2D-DKDE). Secondly, with the neighborhood generated by LSSR, an improved localized generalization error estimation (ILGEE) algorithm is put forward to infer the real-time maximal second-order origin moment of solar power point forecasting error corresponding to designated confidence levels. Finally, the solar power at each temporal moment is deduced as distinct Gaussian distributions, by modifying the mean value and variance according to statistical principles. For the sake of the so-called “extreme”, the proposed scheme could maintain reliability even under circumstances of the worst ML model precision. Cases from a real-world solar power station in Oregon, USA, are used to validate its effectiveness.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"16 4","pages":"3110-3123"},"PeriodicalIF":10.0,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145183405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Transactions on Sustainable Energy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1