{"title":"Diamond/graphene (carbon sp3-sp2) heterojunctions for neuromorphic device applications","authors":"H. Iwane, G. Saito, S. Muto, K. Ueda","doi":"10.1557/s43578-024-01395-5","DOIUrl":null,"url":null,"abstract":"<p>Diamond/graphene (carbon sp<sup>3</sup>-sp<sup>2</sup>) interfaces exhibit various interesting and potentially useful electronic phenomena. The present work demonstrates the possibility of obtaining novel neuromorphic photodevices using such junctions. Junctions were found to show different photoconductivity relaxation behavior depending on their growth conditions such that various optoelectronic properties were observed. In particular, interfaces exhibiting shorter relaxation times could be used to construct image recognition devices mimicking short-term memory functions of the human brain. Using these devices, images of the hand-written numerals 0 through 9 could be optoelectronically recognized with an accuracy on the order of 80%, demonstrating both photo-detection and processing functions in a single device. These results suggest that novel image processing devices could be produced using graphene/diamond heterojunctions.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":16306,"journal":{"name":"Journal of Materials Research","volume":"36 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43578-024-01395-5","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Diamond/graphene (carbon sp3-sp2) interfaces exhibit various interesting and potentially useful electronic phenomena. The present work demonstrates the possibility of obtaining novel neuromorphic photodevices using such junctions. Junctions were found to show different photoconductivity relaxation behavior depending on their growth conditions such that various optoelectronic properties were observed. In particular, interfaces exhibiting shorter relaxation times could be used to construct image recognition devices mimicking short-term memory functions of the human brain. Using these devices, images of the hand-written numerals 0 through 9 could be optoelectronically recognized with an accuracy on the order of 80%, demonstrating both photo-detection and processing functions in a single device. These results suggest that novel image processing devices could be produced using graphene/diamond heterojunctions.
期刊介绍:
Journal of Materials Research (JMR) publishes the latest advances about the creation of new materials and materials with novel functionalities, fundamental understanding of processes that control the response of materials, and development of materials with significant performance improvements relative to state of the art materials. JMR welcomes papers that highlight novel processing techniques, the application and development of new analytical tools, and interpretation of fundamental materials science to achieve enhanced materials properties and uses. Materials research papers in the following topical areas are welcome.
• Novel materials discovery
• Electronic, photonic and magnetic materials
• Energy Conversion and storage materials
• New thermal and structural materials
• Soft materials
• Biomaterials and related topics
• Nanoscale science and technology
• Advances in materials characterization methods and techniques
• Computational materials science, modeling and theory