NOx Emission Trend Prediction for the Waste Incineration Process Based on Partial Least Squares with the Time Series Reconstruction and Exponential Weighting

IF 1.8 4区 工程技术 Q3 ENGINEERING, CHEMICAL Chemical Engineering & Technology Pub Date : 2024-07-17 DOI:10.1002/ceat.202300524
Dr. Zhenghui Li, Prof. Shunchun Yao, Da Chen, Longqian Li, Prof. Zhimin Lu, Prof. Zhuliang Yu
{"title":"NOx Emission Trend Prediction for the Waste Incineration Process Based on Partial Least Squares with the Time Series Reconstruction and Exponential Weighting","authors":"Dr. Zhenghui Li,&nbsp;Prof. Shunchun Yao,&nbsp;Da Chen,&nbsp;Longqian Li,&nbsp;Prof. Zhimin Lu,&nbsp;Prof. Zhuliang Yu","doi":"10.1002/ceat.202300524","DOIUrl":null,"url":null,"abstract":"<p>Accurate prediction of nitrogen oxide (NOx) emission is crucial for effectively controlling pollution in municipal solid waste incineration processes. However, it is challenging to construct a NOx emission prediction model with high prediction accuracy and easy engineering application. To address this, this paper proposes a robust and easily applicable NOx emission trend prediction model oriented to engineering applications, utilizing the partial least squares (PLS) method with the time series reconstruction and exponential weighting (TS-EW-PLS). The model is verified using operational data from an actual waste incineration process, and comparative analysis with the PLS model showed that the TS-EW-PLS model achieved a remarkable improvement of 27–38 % in prediction performance.</p>","PeriodicalId":10083,"journal":{"name":"Chemical Engineering & Technology","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering & Technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ceat.202300524","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate prediction of nitrogen oxide (NOx) emission is crucial for effectively controlling pollution in municipal solid waste incineration processes. However, it is challenging to construct a NOx emission prediction model with high prediction accuracy and easy engineering application. To address this, this paper proposes a robust and easily applicable NOx emission trend prediction model oriented to engineering applications, utilizing the partial least squares (PLS) method with the time series reconstruction and exponential weighting (TS-EW-PLS). The model is verified using operational data from an actual waste incineration process, and comparative analysis with the PLS model showed that the TS-EW-PLS model achieved a remarkable improvement of 27–38 % in prediction performance.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于时间序列重构和指数加权的偏最小二乘法预测垃圾焚烧过程的氮氧化物排放趋势
准确预测氮氧化物(NOx)的排放量对于有效控制城市固体废物焚烧过程中的污染至关重要。然而,构建一个预测精度高且易于工程应用的氮氧化物排放预测模型是一项挑战。为此,本文利用偏最小二乘法(PLS)与时间序列重构和指数加权法(TS-EW-PLS),提出了一个面向工程应用、稳健且易于应用的氮氧化物排放趋势预测模型。该模型利用实际垃圾焚烧过程中的运行数据进行了验证,与 PLS 模型的比较分析表明,TS-EW-PLS 模型在预测性能方面显著提高了 27-38%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Engineering & Technology
Chemical Engineering & Technology 工程技术-工程:化工
CiteScore
3.80
自引率
4.80%
发文量
315
审稿时长
5.5 months
期刊介绍: This is the journal for chemical engineers looking for first-hand information in all areas of chemical and process engineering. Chemical Engineering & Technology is: Competent with contributions written and refereed by outstanding professionals from around the world. Essential because it is an international forum for the exchange of ideas and experiences. Topical because its articles treat the very latest developments in the field.
期刊最新文献
Cover Picture: Chem. Eng. Technol. 11/2024 Editorial Board: Chem. Eng. Technol. 11/2024 Overview Contents: Chem. Eng. Technol. 11/2024 Photoelectrochemical Technology for Solar Fuel: Green Hydrogen, Carbon Dioxide Capture, and Ammonia Production Cover Picture: Chem. Eng. Technol. 10/2024
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1