{"title":"Glass-Based Micro-Hotplate With Low Power Consumption and TGV Structure Through Anodic Bonding and Glass Thermal Reflow","authors":"Honglin Qian;Linxin Chen;Haotian Dai;Fanhong Chen;Shuai Liu;Xiaohui Du;Shuo Gao;Yonggang Jiang;Bing Li;Minjie Zhu;Gaopeng Xue","doi":"10.1109/JMEMS.2024.3425846","DOIUrl":null,"url":null,"abstract":"This study presents a novel microfabrication approach using anodic bonding and glass thermal reflow to fabricate glass-based micro-hotplates with low power consumption owing to the low thermal conductivity coefficient. The glass-film-suspended micro-hotplate, integrated with through glass via (TGV) structure, is achieved by anodic bonding a glass substrate with a patterned silicon (Si) wafer, followed by thermal reflow of the glass substrate around the patterned Si wafer. TGV structures, wherein conductive Si columns are inserted into the glass substrate, have the potential to replace wire-bonders for electrical interconnection with integrated circuit (IC) boards. The fabricated glass-film-suspended micro-hotplates with \n<inline-formula> <tex-math>$\\sim 20\\mu $ </tex-math></inline-formula>\n m thickness demonstrate significantly lower power consumption and higher heating efficiency, compared to equivalent dimensions in Si-based counterparts. It is noted that the thermal conductivity coefficient of Pyrex glass should be corrected after thermal reflow, due to water evaporation and glass substrate recrystallization. Furthermore, our microfabrication approach for precisely patterning glass-based microstructures can be applicable to other glass-based MEMS devices for three-dimensional (3D) integrated microsystems.[2024-0100]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"33 5","pages":"610-619"},"PeriodicalIF":2.5000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microelectromechanical Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10602766/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a novel microfabrication approach using anodic bonding and glass thermal reflow to fabricate glass-based micro-hotplates with low power consumption owing to the low thermal conductivity coefficient. The glass-film-suspended micro-hotplate, integrated with through glass via (TGV) structure, is achieved by anodic bonding a glass substrate with a patterned silicon (Si) wafer, followed by thermal reflow of the glass substrate around the patterned Si wafer. TGV structures, wherein conductive Si columns are inserted into the glass substrate, have the potential to replace wire-bonders for electrical interconnection with integrated circuit (IC) boards. The fabricated glass-film-suspended micro-hotplates with
$\sim 20\mu $
m thickness demonstrate significantly lower power consumption and higher heating efficiency, compared to equivalent dimensions in Si-based counterparts. It is noted that the thermal conductivity coefficient of Pyrex glass should be corrected after thermal reflow, due to water evaporation and glass substrate recrystallization. Furthermore, our microfabrication approach for precisely patterning glass-based microstructures can be applicable to other glass-based MEMS devices for three-dimensional (3D) integrated microsystems.[2024-0100]
期刊介绍:
The topics of interest include, but are not limited to: devices ranging in size from microns to millimeters, IC-compatible fabrication techniques, other fabrication techniques, measurement of micro phenomena, theoretical results, new materials and designs, micro actuators, micro robots, micro batteries, bearings, wear, reliability, electrical interconnections, micro telemanipulation, and standards appropriate to MEMS. Application examples and application oriented devices in fluidics, optics, bio-medical engineering, etc., are also of central interest.