An Ultra-Thin Self-Resonant Coupler With Nanocrystalline Flake Ribbons for Wireless Power Transfer System

IF 2.1 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Magnetics Pub Date : 2024-07-17 DOI:10.1109/TMAG.2024.3429488
Jingchun Xiang;C. Q. Jiang;Tianlu Ma;Yibo Wang;Yuanshuang Fan
{"title":"An Ultra-Thin Self-Resonant Coupler With Nanocrystalline Flake Ribbons for Wireless Power Transfer System","authors":"Jingchun Xiang;C. Q. Jiang;Tianlu Ma;Yibo Wang;Yuanshuang Fan","doi":"10.1109/TMAG.2024.3429488","DOIUrl":null,"url":null,"abstract":"This article introduces an ultra-thin self-resonant coupler using nanocrystalline flake ribbon (NFR) material for wireless power transfer (WPT). The self-resonant coupler has garnered certain attention in the industry due to its ability to eliminate the compensating capacitor, resulting in a notable increase in power density. However, most research endeavors have primarily focused on WPT systems operating at megahertz frequencies with low power levels. Nanocrystalline materials exhibit high magnetic saturation and lower core loss in comparison to conventional MnZn materials. In addition, NFR materials offer ultra-thin profiles and flexibility, enabling the creation of compact WPT systems. In this study, the self-resonant coupler is fabricated with a double-D (DD) structured, flexible printed circuit (FPC) pad and integrated NFR core. This configuration achieves a power output of 400 W at 32 kHz, rendering it suitable for flexible surface WPT charging systems within a thickness of 0.54 mm.","PeriodicalId":13405,"journal":{"name":"IEEE Transactions on Magnetics","volume":"60 9","pages":"1-5"},"PeriodicalIF":2.1000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Magnetics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10601222/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This article introduces an ultra-thin self-resonant coupler using nanocrystalline flake ribbon (NFR) material for wireless power transfer (WPT). The self-resonant coupler has garnered certain attention in the industry due to its ability to eliminate the compensating capacitor, resulting in a notable increase in power density. However, most research endeavors have primarily focused on WPT systems operating at megahertz frequencies with low power levels. Nanocrystalline materials exhibit high magnetic saturation and lower core loss in comparison to conventional MnZn materials. In addition, NFR materials offer ultra-thin profiles and flexibility, enabling the creation of compact WPT systems. In this study, the self-resonant coupler is fabricated with a double-D (DD) structured, flexible printed circuit (FPC) pad and integrated NFR core. This configuration achieves a power output of 400 W at 32 kHz, rendering it suitable for flexible surface WPT charging systems within a thickness of 0.54 mm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于无线电力传输系统的纳米晶薄片带状超薄自谐振耦合器
本文介绍了一种使用纳米晶薄片带(NFR)材料的超薄自谐振耦合器,用于无线功率传输(WPT)。自谐振耦合器能够消除补偿电容器,从而显著提高功率密度,因此受到业界的广泛关注。然而,大多数研究工作主要集中在工作频率为兆赫兹、功率水平较低的 WPT 系统上。与传统的锰锌材料相比,纳米晶材料具有较高的磁饱和度和较低的磁芯损耗。此外,NFR 材料还具有超薄外形和灵活性,可用于制造紧凑型 WPT 系统。在这项研究中,自谐振耦合器采用了双 D(DD)结构、柔性印刷电路(FPC)焊盘和集成 NFR 磁芯。这种配置在 32 kHz 频率下可实现 400 W 的功率输出,适用于厚度仅为 0.54 mm 的柔性表面 WPT 充电系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Magnetics
IEEE Transactions on Magnetics 工程技术-工程:电子与电气
CiteScore
4.00
自引率
14.30%
发文量
565
审稿时长
4.1 months
期刊介绍: Science and technology related to the basic physics and engineering of magnetism, magnetic materials, applied magnetics, magnetic devices, and magnetic data storage. The IEEE Transactions on Magnetics publishes scholarly articles of archival value as well as tutorial expositions and critical reviews of classical subjects and topics of current interest.
期刊最新文献
Retraction Notice: Characteristics Analysis of the Combined Levitation and Guidance EDS Maglev Train in the Rolling Motion Front Cover Table of Contents IEEE Transactions on Magnetics Institutional Listings TechRxiv: Share Your Preprint Research with the World!
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1