{"title":"First-Principles Study of Structural Stability and Tensile Strengths of Light-Element-Doped ZrTi","authors":"Shouxin Cui, Wenxia Feng, Bao Zhao, Guiqing Zhang, Feng Guo, Zengtao Lv","doi":"10.1134/S106378342460064X","DOIUrl":null,"url":null,"abstract":"<p>ZrTi alloys have potential applications in critical parts of spacecraft. As lightweight design is a fundamental requirement for spacecraft, incorporating light elements into ZrTi alloys is a feasible approach. In this paper, we investigated the tensile deformation behavior of ZrTi doped with light element by using the plane-wave pseudopotential density functional method. Covalent Ti–Zr bonds accommodate deformation by softening and breaking at large tensions, and structural stability of ZrTi and ZrTiX (X = B, Al, Ga, and V) is determined by the strength of these Ti–Zr bonds under tension. The results show that the lower doped concentrations of light element decrease the tensile strengths. However, there is no obvious difference in tensile strengths along [11<span>\\(\\bar {2}\\)</span>0] direction between ZrTi and ZrTi<sub>0.875</sub>Al<sub>0.125</sub>. The results of Mulliken overlap populations indicate that different tensile strengths of ZrTiX should be resulted from different strengths of covalent Ti–Zr bonds. The incorporation of light element dopants does not strengthen all chemical bonds and weakens strengths of covalent Ti–Zr bonds, indicating that experimental strengthening mechanism of ternary ZrTiX alloys could be ascribed to Hall–Petch effect.</p>","PeriodicalId":731,"journal":{"name":"Physics of the Solid State","volume":"66 5","pages":"129 - 138"},"PeriodicalIF":0.9000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Solid State","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S106378342460064X","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
ZrTi alloys have potential applications in critical parts of spacecraft. As lightweight design is a fundamental requirement for spacecraft, incorporating light elements into ZrTi alloys is a feasible approach. In this paper, we investigated the tensile deformation behavior of ZrTi doped with light element by using the plane-wave pseudopotential density functional method. Covalent Ti–Zr bonds accommodate deformation by softening and breaking at large tensions, and structural stability of ZrTi and ZrTiX (X = B, Al, Ga, and V) is determined by the strength of these Ti–Zr bonds under tension. The results show that the lower doped concentrations of light element decrease the tensile strengths. However, there is no obvious difference in tensile strengths along [11\(\bar {2}\)0] direction between ZrTi and ZrTi0.875Al0.125. The results of Mulliken overlap populations indicate that different tensile strengths of ZrTiX should be resulted from different strengths of covalent Ti–Zr bonds. The incorporation of light element dopants does not strengthen all chemical bonds and weakens strengths of covalent Ti–Zr bonds, indicating that experimental strengthening mechanism of ternary ZrTiX alloys could be ascribed to Hall–Petch effect.
期刊介绍:
Presents the latest results from Russia’s leading researchers in condensed matter physics at the Russian Academy of Sciences and other prestigious institutions. Covers all areas of solid state physics including solid state optics, solid state acoustics, electronic and vibrational spectra, phase transitions, ferroelectricity, magnetism, and superconductivity. Also presents review papers on the most important problems in solid state physics.