Giuseppe Failla, Andrea Burlon, Andrea Francesco Russillo
{"title":"A novel metamaterial multiple beam structure with internal local resonance","authors":"Giuseppe Failla, Andrea Burlon, Andrea Francesco Russillo","doi":"10.1007/s00707-024-04006-w","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a novel locally resonant metamaterial structure and proposes a method to analyze its elastic wave dispersion properties. The structure is conceived as a multiple beam system with parallel beams transversely interconnected by periodic arrays of small resonators, each consisting of a spring-mass-spring subsystem in parallel with a couple of springs. Inserting the resonators between the beams, instead of attaching them as external appendages like in some alternative examples of locally resonant beams in the literature, makes the structure appealing for practical realization and use; furthermore, hosting several arrays of resonators gives the possibility to open multiple band gaps. The proposed method is a homogenization approach for flexural wave dispersion analysis, which removes the equations for the resonators from the set governing the dynamics of the system and reverts the original structure to an equivalent one featuring a tri-diagonal effective mass matrix with frequency dependent terms. The advantage of the homogenization approach is twofold: (1) it demonstrates that the band gaps arise in the frequency ranges where the effective mass matrix is negative definite, generalizing the well-established concept of band gaps attributable to negative mass effects in single locally resonant beams; (2) it provides dispersion curves and band gaps very efficiently, and the band gaps are identified upon calculating the eigenvalues of the tri-diagonal effective mass matrix. Analytical expressions of the band gap edges are obtained for the baseline case of a double beam system, to be readily used for design. Additionally, the exact transfer matrix method in conjunction with the Bloch theorem is formulated as alternative to the homogenization approach for wave dispersion analysis. Finally, the proposed concept of locally resonant structure and pertinent homogenization approach are validated by calculating the transmittance properties of the corresponding finite structure, via the standard finite element method.</p></div>","PeriodicalId":456,"journal":{"name":"Acta Mechanica","volume":"235 9","pages":"5885 - 5903"},"PeriodicalIF":2.3000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00707-024-04006-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a novel locally resonant metamaterial structure and proposes a method to analyze its elastic wave dispersion properties. The structure is conceived as a multiple beam system with parallel beams transversely interconnected by periodic arrays of small resonators, each consisting of a spring-mass-spring subsystem in parallel with a couple of springs. Inserting the resonators between the beams, instead of attaching them as external appendages like in some alternative examples of locally resonant beams in the literature, makes the structure appealing for practical realization and use; furthermore, hosting several arrays of resonators gives the possibility to open multiple band gaps. The proposed method is a homogenization approach for flexural wave dispersion analysis, which removes the equations for the resonators from the set governing the dynamics of the system and reverts the original structure to an equivalent one featuring a tri-diagonal effective mass matrix with frequency dependent terms. The advantage of the homogenization approach is twofold: (1) it demonstrates that the band gaps arise in the frequency ranges where the effective mass matrix is negative definite, generalizing the well-established concept of band gaps attributable to negative mass effects in single locally resonant beams; (2) it provides dispersion curves and band gaps very efficiently, and the band gaps are identified upon calculating the eigenvalues of the tri-diagonal effective mass matrix. Analytical expressions of the band gap edges are obtained for the baseline case of a double beam system, to be readily used for design. Additionally, the exact transfer matrix method in conjunction with the Bloch theorem is formulated as alternative to the homogenization approach for wave dispersion analysis. Finally, the proposed concept of locally resonant structure and pertinent homogenization approach are validated by calculating the transmittance properties of the corresponding finite structure, via the standard finite element method.
期刊介绍:
Since 1965, the international journal Acta Mechanica has been among the leading journals in the field of theoretical and applied mechanics. In addition to the classical fields such as elasticity, plasticity, vibrations, rigid body dynamics, hydrodynamics, and gasdynamics, it also gives special attention to recently developed areas such as non-Newtonian fluid dynamics, micro/nano mechanics, smart materials and structures, and issues at the interface of mechanics and materials. The journal further publishes papers in such related fields as rheology, thermodynamics, and electromagnetic interactions with fluids and solids. In addition, articles in applied mathematics dealing with significant mechanics problems are also welcome.