Stanley Olivier Kanemoto, Pierre Christelle Mvondo Onana, Arnaud Maxime Yona Cheumani, Maurice Kor Ndikontar, Madurai Suguna Lakshmi
{"title":"Thermal stability of flexible polyurethane foams obtained from reactive phosphorus-containing polyols dispersed in polyethylene glycol","authors":"Stanley Olivier Kanemoto, Pierre Christelle Mvondo Onana, Arnaud Maxime Yona Cheumani, Maurice Kor Ndikontar, Madurai Suguna Lakshmi","doi":"10.1007/s13726-024-01351-4","DOIUrl":null,"url":null,"abstract":"<div><p>Flame-retardant and flexibility-enhanced phosphorus-polyurethane foams (P-PUF)s were prepared from phosphorus–hydroxyl precursors and polyethylene glycol (PEG) as polyols. In the first step, three different precursors, such as tris-(5-hydroxypentyl) phosphate (P-Pen-OHs), tris-(4-hydroxybutyl) phosphate (P-But-OHs), and tris-(3-hydroxypropyl) phosphate (P-Pro-OHs) were synthesized and used as flame retardants. In the second step, the precursors were made to react with toluene-2,4-diisocyanate to modify the flexibility and flame retardancy properties of the P-PUF product. The P-PUFs were obtained by a one-shot process system and then analyzed for their thermal stability, flame retardancy, and compressive strength properties. Among all P-PUF samples, P-But-PUF showed the best compressive properties with a Young’s modulus value of 0.167 MPa. The compressive properties of P-PUF are found to be proportional to their relative density. These results show that the chemical structure of the phosphorus–hydroxyl precursor had a slight effect on the compressive properties as well as the porosity of the final materials. All the foams had T<sub>g</sub> values in the range of 58–70 ℃ and their thermal degradation in a nitrogen atmosphere started around 100 ℃. From the limiting oxygen index test, P-PUF samples are considered marginally stable materials with a slow-burning behavior that confirms the efficiency of reactive phosphorus-based flame retardants.</p><h3>Graphic abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":601,"journal":{"name":"Iranian Polymer Journal","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13726-024-01351-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s13726-024-01351-4","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Flame-retardant and flexibility-enhanced phosphorus-polyurethane foams (P-PUF)s were prepared from phosphorus–hydroxyl precursors and polyethylene glycol (PEG) as polyols. In the first step, three different precursors, such as tris-(5-hydroxypentyl) phosphate (P-Pen-OHs), tris-(4-hydroxybutyl) phosphate (P-But-OHs), and tris-(3-hydroxypropyl) phosphate (P-Pro-OHs) were synthesized and used as flame retardants. In the second step, the precursors were made to react with toluene-2,4-diisocyanate to modify the flexibility and flame retardancy properties of the P-PUF product. The P-PUFs were obtained by a one-shot process system and then analyzed for their thermal stability, flame retardancy, and compressive strength properties. Among all P-PUF samples, P-But-PUF showed the best compressive properties with a Young’s modulus value of 0.167 MPa. The compressive properties of P-PUF are found to be proportional to their relative density. These results show that the chemical structure of the phosphorus–hydroxyl precursor had a slight effect on the compressive properties as well as the porosity of the final materials. All the foams had Tg values in the range of 58–70 ℃ and their thermal degradation in a nitrogen atmosphere started around 100 ℃. From the limiting oxygen index test, P-PUF samples are considered marginally stable materials with a slow-burning behavior that confirms the efficiency of reactive phosphorus-based flame retardants.
期刊介绍:
Iranian Polymer Journal, a monthly peer-reviewed international journal, provides a continuous forum for the dissemination of the original research and latest advances made in science and technology of polymers, covering diverse areas of polymer synthesis, characterization, polymer physics, rubber, plastics and composites, processing and engineering, biopolymers, drug delivery systems and natural polymers to meet specific applications. Also contributions from nano-related fields are regarded especially important for its versatility in modern scientific development.