Zeytu Gashaw Asfaw, Patrick E. Brown, Jamie Stafford
{"title":"The root-Gaussian Cox Process for spatial-temporal disease mapping with aggregated data","authors":"Zeytu Gashaw Asfaw, Patrick E. Brown, Jamie Stafford","doi":"10.1007/s00180-024-01532-y","DOIUrl":null,"url":null,"abstract":"<p>The study of aggregated data influenced by time, space, and extra changes in geographic region borders was the main emphasis of the current paper. This may occur if the regions used to count the reported incidences of a health outcome over time change periodically. In order to handle the spatial-temporal scenario, we enhance the spatial root-Gaussian Cox Process (RGCP), which makes use of the square-root link function rather than the more typical log-link function. The algorithm’s ability to estimate a risk surface has been proven by a simulation study, and it has also been validated by real datasets.</p>","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":"24 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00180-024-01532-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
The study of aggregated data influenced by time, space, and extra changes in geographic region borders was the main emphasis of the current paper. This may occur if the regions used to count the reported incidences of a health outcome over time change periodically. In order to handle the spatial-temporal scenario, we enhance the spatial root-Gaussian Cox Process (RGCP), which makes use of the square-root link function rather than the more typical log-link function. The algorithm’s ability to estimate a risk surface has been proven by a simulation study, and it has also been validated by real datasets.
期刊介绍:
Computational Statistics (CompStat) is an international journal which promotes the publication of applications and methodological research in the field of Computational Statistics. The focus of papers in CompStat is on the contribution to and influence of computing on statistics and vice versa. The journal provides a forum for computer scientists, mathematicians, and statisticians in a variety of fields of statistics such as biometrics, econometrics, data analysis, graphics, simulation, algorithms, knowledge based systems, and Bayesian computing. CompStat publishes hardware, software plus package reports.