Edelize Angélica Gomes, Renato Altobelli Antunes, Eric Marchezini Mazzer, Vanessa de Freitas Cunha Lins
{"title":"High-temperature oxidation of Cu–Al–Ni–Mn shape-memory alloy","authors":"Edelize Angélica Gomes, Renato Altobelli Antunes, Eric Marchezini Mazzer, Vanessa de Freitas Cunha Lins","doi":"10.1002/maco.202414438","DOIUrl":null,"url":null,"abstract":"<p>The isothermal oxidation behavior of the Cu-11.35Al-3.2Ni-3.5Mn (wt.%) shape-memory alloy (SMA) in the temperature range of 500–900°C in oxygen was studied using the thermogravimetric (TG) method. TG curve showed that the alloy has parabolic isothermal oxidation characteristics. The effect of oxidation on the surface morphology and chemical composition of the Cu–Al–Ni–Mn alloy was determined by scanning electron microscopy, energy-dispersive spectroscopy, and X-ray photoelectron spectroscopy (XPS) analyses. The oxidation rate of SMA increases up to 700°C, remains stable at 800°C, and increases again up to 900°C. The XPS analysis identified that the corrosion products mainly contained MnO<sub>2</sub>, MnO/Mn<sub>2</sub>O<sub>3</sub>, and Al<sub>2</sub>O<sub>3</sub>.</p>","PeriodicalId":18225,"journal":{"name":"Materials and Corrosion-werkstoffe Und Korrosion","volume":"75 11","pages":"1429-1437"},"PeriodicalIF":1.6000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Corrosion-werkstoffe Und Korrosion","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/maco.202414438","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The isothermal oxidation behavior of the Cu-11.35Al-3.2Ni-3.5Mn (wt.%) shape-memory alloy (SMA) in the temperature range of 500–900°C in oxygen was studied using the thermogravimetric (TG) method. TG curve showed that the alloy has parabolic isothermal oxidation characteristics. The effect of oxidation on the surface morphology and chemical composition of the Cu–Al–Ni–Mn alloy was determined by scanning electron microscopy, energy-dispersive spectroscopy, and X-ray photoelectron spectroscopy (XPS) analyses. The oxidation rate of SMA increases up to 700°C, remains stable at 800°C, and increases again up to 900°C. The XPS analysis identified that the corrosion products mainly contained MnO2, MnO/Mn2O3, and Al2O3.
期刊介绍:
Materials and Corrosion is the leading European journal in its field, providing rapid and comprehensive coverage of the subject and specifically highlighting the increasing importance of corrosion research and prevention.
Several sections exclusive to Materials and Corrosion bring you closer to the current events in the field of corrosion research and add to the impact this journal can make on your work.