G. N. Kopylova, Yu. K. Serafimova, A. A. Lyubushin
{"title":"Meteorological Anomalies and Strong Earthquakes: A Case Study of the Petropavlovsk-Kamchatsky Region, Kamchatka Peninsula","authors":"G. N. Kopylova, Yu. K. Serafimova, A. A. Lyubushin","doi":"10.1134/S1069351324700502","DOIUrl":null,"url":null,"abstract":"<p><b>Abstract</b>— Long-term (1962‒2020) observations of air temperature and atmospheric pressure at two weather stations in the region of Petropavlovsk-Kamchatsky, Kamchatka Krai, are analyzed to examine the hypotheses about a connection between increased and decreased meteorological parameter values and their contrasting changes with a final stage of preparation of local Kamchatka earthquakes with magnitudes 5.2‒8.3, which occurred at epicentral distances of 22–440 km and caused perceptible shaking with intensity <i>I</i><sub>MSK<i>-</i>64</sub> ≥ 4–5. To identify meteorological anomalies, we used an empirical method comparing daily mean air temperatures and atmospheric pressures with daily averages of their annual seasonal-mean functions and a formalized method estimating the minimum normalized entropy <i>En</i>, the logarithm of the curtosis coefficient logκ, and the autoregressive measure of nonstationarity <i>Q</i><sup>2</sup> of the time series of air temperature and atmospheric pressure in a moving time window with a length of 112 days shifted by one day. Various types of meteoanomalies before earthquakes were studied on time intervals of seven and 30 days. The correlation between the detected anomalies and subsequent earthquakes was evaluated from the ratio of reliability and validity of the conditional meteorological precursor. It is found that the manifestation of various types of meteorological anomalies before earthquakes is mainly of a random nature. The lack of a pronounced correlation between air temperature increases and subsequent earthquakes casts doubt on the reality of the mechanism of generation of thermal surface anomalies before earthquakes in the lithosphere‒atmosphere‒ionosphere‒magnetosphere coupling (LAIMC) model for the study region. The methods used for meteorological data analysis can be applied in seismic forecasting in the region of the Petropavlovsk-Yelizovo agglomeration, Kamchatka Krai, for diagnosing weather-dependent anomalies in the changes of the ground-based observation data.</p>","PeriodicalId":602,"journal":{"name":"Izvestiya, Physics of the Solid Earth","volume":"60 3","pages":"494 - 507"},"PeriodicalIF":0.9000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya, Physics of the Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S1069351324700502","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract— Long-term (1962‒2020) observations of air temperature and atmospheric pressure at two weather stations in the region of Petropavlovsk-Kamchatsky, Kamchatka Krai, are analyzed to examine the hypotheses about a connection between increased and decreased meteorological parameter values and their contrasting changes with a final stage of preparation of local Kamchatka earthquakes with magnitudes 5.2‒8.3, which occurred at epicentral distances of 22–440 km and caused perceptible shaking with intensity IMSK-64 ≥ 4–5. To identify meteorological anomalies, we used an empirical method comparing daily mean air temperatures and atmospheric pressures with daily averages of their annual seasonal-mean functions and a formalized method estimating the minimum normalized entropy En, the logarithm of the curtosis coefficient logκ, and the autoregressive measure of nonstationarity Q2 of the time series of air temperature and atmospheric pressure in a moving time window with a length of 112 days shifted by one day. Various types of meteoanomalies before earthquakes were studied on time intervals of seven and 30 days. The correlation between the detected anomalies and subsequent earthquakes was evaluated from the ratio of reliability and validity of the conditional meteorological precursor. It is found that the manifestation of various types of meteorological anomalies before earthquakes is mainly of a random nature. The lack of a pronounced correlation between air temperature increases and subsequent earthquakes casts doubt on the reality of the mechanism of generation of thermal surface anomalies before earthquakes in the lithosphere‒atmosphere‒ionosphere‒magnetosphere coupling (LAIMC) model for the study region. The methods used for meteorological data analysis can be applied in seismic forecasting in the region of the Petropavlovsk-Yelizovo agglomeration, Kamchatka Krai, for diagnosing weather-dependent anomalies in the changes of the ground-based observation data.
期刊介绍:
Izvestiya, Physics of the Solid Earth is an international peer reviewed journal that publishes results of original theoretical and experimental research in relevant areas of the physics of the Earth''s interior and applied geophysics. The journal welcomes manuscripts from all countries in the English or Russian language.