Copper oxide coupled with photon upconversion for solar water splitting

IF 7.5 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Communications Materials Pub Date : 2024-07-20 DOI:10.1038/s43246-024-00574-5
Yerbolat Magazov, Vladislav Kudryashov, Kuanysh Moldabekov, Magzhan Amze, Aiisha Nurmanova, Asset Aliyev, Nurxat Nuraje
{"title":"Copper oxide coupled with photon upconversion for solar water splitting","authors":"Yerbolat Magazov, Vladislav Kudryashov, Kuanysh Moldabekov, Magzhan Amze, Aiisha Nurmanova, Asset Aliyev, Nurxat Nuraje","doi":"10.1038/s43246-024-00574-5","DOIUrl":null,"url":null,"abstract":"Photoelectrochemical water splitting is a promising solution for harnessing solar radiation for hydrogen production. Copper oxide semiconductors, particularly materials based on cuprous oxide, have attracted attention due to their abundant elemental availability and scalable synthesis methods. To improve the generated photocurrent of the photoelectrode system, photon upconversion materials can be implemented into water-splitting devices. Here, we demonstrate the potential application of triplet-triplet annihilation-based upconversion in solar-assisted water splitting and highlight the significance of photonic designs to improve the light-harnessing properties of photoactive materials. The triplet-triplet annihilation mechanism is particularly suitable due to its efficient conversion at low photon intensity, namely under 1-sun illumination. Our results show that Cu2O coupled with an upconverter outperforms bare Cu2O by 56% in terms of produced photocurrent density. We construct a hybrid water-splitting device with an extended absorption range by utilizing a semi-transparent 600 nm Cu2O film with a 5 nm Au underlayer. Photoelectrochemical water splitting uses solar radiation for hydrogen production. Here, triplet-triplet annihilation-based upconversion is integrated into a water-splitting device which improves the light-harnessing properties of the photoactive materials","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00574-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00574-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Photoelectrochemical water splitting is a promising solution for harnessing solar radiation for hydrogen production. Copper oxide semiconductors, particularly materials based on cuprous oxide, have attracted attention due to their abundant elemental availability and scalable synthesis methods. To improve the generated photocurrent of the photoelectrode system, photon upconversion materials can be implemented into water-splitting devices. Here, we demonstrate the potential application of triplet-triplet annihilation-based upconversion in solar-assisted water splitting and highlight the significance of photonic designs to improve the light-harnessing properties of photoactive materials. The triplet-triplet annihilation mechanism is particularly suitable due to its efficient conversion at low photon intensity, namely under 1-sun illumination. Our results show that Cu2O coupled with an upconverter outperforms bare Cu2O by 56% in terms of produced photocurrent density. We construct a hybrid water-splitting device with an extended absorption range by utilizing a semi-transparent 600 nm Cu2O film with a 5 nm Au underlayer. Photoelectrochemical water splitting uses solar radiation for hydrogen production. Here, triplet-triplet annihilation-based upconversion is integrated into a water-splitting device which improves the light-harnessing properties of the photoactive materials

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于太阳能水分离的光子上转换耦合氧化铜
光电化学水分裂是利用太阳辐射制氢的一种前景广阔的解决方案。氧化铜半导体,尤其是基于氧化亚铜的材料,因其丰富的元素供应和可扩展的合成方法而备受关注。为了提高光电极系统产生的光电流,可将光子上转换材料应用到分水装置中。在此,我们展示了基于三重三重湮灭的上转换技术在太阳能辅助水分离中的潜在应用,并强调了光子设计对改善光活性材料光收集特性的重要意义。三重-三重湮灭机制特别适合在低光子强度下(即在 1 太阳光照射下)进行高效转换。我们的研究结果表明,就产生的光电流密度而言,与上转换器耦合的 Cu2O 比裸 Cu2O 高出 56%。我们利用带 5 纳米金底层的半透明 600 纳米 Cu2O 薄膜,构建了一种具有扩展吸收范围的混合分水器件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications Materials
Communications Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
12.10
自引率
1.30%
发文量
85
审稿时长
17 weeks
期刊介绍: Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.
期刊最新文献
Defect-engineered monolayer MoS2 with enhanced memristive and synaptic functionality for neuromorphic computing High-temperature Brown-Zak oscillations in graphene/hBN moiré field effect transistor fabricated using molecular beam epitaxy Toward direct band gaps in typical 2D transition-metal dichalcogenides junctions via real and energy spaces tuning Transformation of europium metal-organic framework from 3D via 2D into exfoliating 3D for enzyme immobilization Stable and sustainable perovskite solar modules by optimizing blade coating nickel oxide deposition over 15 × 15 cm2 area
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1