{"title":"STT-RAM-Based Hierarchical in-Memory Computing","authors":"Dhruv Gajaria;Kevin Antony Gomez;Tosiron Adegbija","doi":"10.1109/TPDS.2024.3430853","DOIUrl":null,"url":null,"abstract":"In-memory computing promises to overcome the von Neumann bottleneck in computer systems by performing computations directly within the memory. Previous research has suggested using \n<italic>Spin-Transfer Torque RAM (STT-RAM)</i>\n for in-memory computing due to its non-volatility, low leakage power, high density, endurance, and commercial viability. This paper explores \n<italic>hierarchical in-memory computing</i>\n, where different levels of the memory hierarchy are augmented with processing elements to optimize workload execution. The paper investigates processing in memory (PiM) using non-volatile STT-RAM and processing in cache (PiC) using volatile STT-RAM with relaxed retention, which helps mitigate STT-RAM's write latency and energy overheads. We analyze tradeoffs and overheads associated with data movement for PiC versus write overheads for PiM using STT-RAMs for various workloads. We examine workload characteristics, such as computational intensity and CPU-dependent workloads with limited instruction-level parallelism, and their impact on PiC/PiM tradeoffs. Using these workloads, we evaluate computing in STT-RAM versus SRAM at different cache hierarchy levels and explore the potential of heterogeneous STT-RAM cache architectures with various retention times for PiC and CPU-based computing. Our experiments reveal significant advantages of STT-RAM-based PiC over PiM for specific workloads. Finally, we describe open research problems in hierarchical in-memory computing architectures to further enhance this paradigm.","PeriodicalId":13257,"journal":{"name":"IEEE Transactions on Parallel and Distributed Systems","volume":"35 9","pages":"1615-1629"},"PeriodicalIF":5.6000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Parallel and Distributed Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10603412/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
In-memory computing promises to overcome the von Neumann bottleneck in computer systems by performing computations directly within the memory. Previous research has suggested using
Spin-Transfer Torque RAM (STT-RAM)
for in-memory computing due to its non-volatility, low leakage power, high density, endurance, and commercial viability. This paper explores
hierarchical in-memory computing
, where different levels of the memory hierarchy are augmented with processing elements to optimize workload execution. The paper investigates processing in memory (PiM) using non-volatile STT-RAM and processing in cache (PiC) using volatile STT-RAM with relaxed retention, which helps mitigate STT-RAM's write latency and energy overheads. We analyze tradeoffs and overheads associated with data movement for PiC versus write overheads for PiM using STT-RAMs for various workloads. We examine workload characteristics, such as computational intensity and CPU-dependent workloads with limited instruction-level parallelism, and their impact on PiC/PiM tradeoffs. Using these workloads, we evaluate computing in STT-RAM versus SRAM at different cache hierarchy levels and explore the potential of heterogeneous STT-RAM cache architectures with various retention times for PiC and CPU-based computing. Our experiments reveal significant advantages of STT-RAM-based PiC over PiM for specific workloads. Finally, we describe open research problems in hierarchical in-memory computing architectures to further enhance this paradigm.
期刊介绍:
IEEE Transactions on Parallel and Distributed Systems (TPDS) is published monthly. It publishes a range of papers, comments on previously published papers, and survey articles that deal with the parallel and distributed systems research areas of current importance to our readers. Particular areas of interest include, but are not limited to:
a) Parallel and distributed algorithms, focusing on topics such as: models of computation; numerical, combinatorial, and data-intensive parallel algorithms, scalability of algorithms and data structures for parallel and distributed systems, communication and synchronization protocols, network algorithms, scheduling, and load balancing.
b) Applications of parallel and distributed computing, including computational and data-enabled science and engineering, big data applications, parallel crowd sourcing, large-scale social network analysis, management of big data, cloud and grid computing, scientific and biomedical applications, mobile computing, and cyber-physical systems.
c) Parallel and distributed architectures, including architectures for instruction-level and thread-level parallelism; design, analysis, implementation, fault resilience and performance measurements of multiple-processor systems; multicore processors, heterogeneous many-core systems; petascale and exascale systems designs; novel big data architectures; special purpose architectures, including graphics processors, signal processors, network processors, media accelerators, and other special purpose processors and accelerators; impact of technology on architecture; network and interconnect architectures; parallel I/O and storage systems; architecture of the memory hierarchy; power-efficient and green computing architectures; dependable architectures; and performance modeling and evaluation.
d) Parallel and distributed software, including parallel and multicore programming languages and compilers, runtime systems, operating systems, Internet computing and web services, resource management including green computing, middleware for grids, clouds, and data centers, libraries, performance modeling and evaluation, parallel programming paradigms, and programming environments and tools.