{"title":"Numerical simulation on the dynamic mechanical response and fracture mechanism of rocks containing a single hole","authors":"Zhenyu Han, Kai Liu, Jinyin Ma, Diyuan Li","doi":"10.1007/s40789-024-00718-5","DOIUrl":null,"url":null,"abstract":"<p>Caverns and tunnels are constantly exposed to dynamic loads, posing a potentially significant threat to the safety of rock structures. To facilitate the understanding of dynamic fracture around openings, a series of discrete element models were established to numerically examine the effect of hole shape on dynamic mechanical properties and crack evolution. The results indicate that the existence of a hole greatly reduces dynamic strength, and the reduction is closely related to hole shape. The strain variation of pre-holed specimens is more complicated and even larger than the value of intact specimens. Although crack initiation differs for varying hole shapes, the entire structural collapse of specimens is controlled by macro shear cracks along the diagonal direction of the specimen, which are effectively identified by velocity trend arrows and contact force distribution. Finally, comparative analysis between failure pattern of pre-holed specimens under static and dynamic loads were conducted.</p>","PeriodicalId":53469,"journal":{"name":"International Journal of Coal Science & Technology","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Coal Science & Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40789-024-00718-5","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Caverns and tunnels are constantly exposed to dynamic loads, posing a potentially significant threat to the safety of rock structures. To facilitate the understanding of dynamic fracture around openings, a series of discrete element models were established to numerically examine the effect of hole shape on dynamic mechanical properties and crack evolution. The results indicate that the existence of a hole greatly reduces dynamic strength, and the reduction is closely related to hole shape. The strain variation of pre-holed specimens is more complicated and even larger than the value of intact specimens. Although crack initiation differs for varying hole shapes, the entire structural collapse of specimens is controlled by macro shear cracks along the diagonal direction of the specimen, which are effectively identified by velocity trend arrows and contact force distribution. Finally, comparative analysis between failure pattern of pre-holed specimens under static and dynamic loads were conducted.
期刊介绍:
The International Journal of Coal Science & Technology is a peer-reviewed open access journal that focuses on key topics of coal scientific research and mining development. It serves as a forum for scientists to present research findings and discuss challenging issues in the field.
The journal covers a range of topics including coal geology, geochemistry, geophysics, mineralogy, and petrology. It also covers coal mining theory, technology, and engineering, as well as coal processing, utilization, and conversion. Additionally, the journal explores coal mining environment and reclamation, along with related aspects.
The International Journal of Coal Science & Technology is published with China Coal Society, who also cover the publication costs. This means that authors do not need to pay an article-processing charge.