{"title":"Shifting wood between material and energy use: Modeling the effects of substitution","authors":"Theresa Boiger, Claudia Mair-Bauernfeind, Raphael Asada, Tobias Stern","doi":"10.1111/jiec.13530","DOIUrl":null,"url":null,"abstract":"<p>Wood as a renewable material is relevant for climate change mitigation: Carbon sequestration in forests and carbon storage in harvested wood products (HWPs) contribute to carbon reduction in the atmosphere, and the substitution of carbon-intensive products with wood products can reduce greenhouse gas (GHG) emissions. Since wood is a limited resource, it must be used efficiently and sustainably. Shifting wood from one application to another might result in decreased GHG emissions due to substitution effects. However, which wood application will lead to a GHG emission reduction is currently unknown. This study investigates the effects of shifting wood between applications and the resulting substitution effects from a system perspective. A system dynamics model describes the wood utilization system of Austria, including the value chains from the forest to wood-processing industries and the substitution that takes place in these industries. These value chains are associated with the global warming potential. Seven wood utilization scenarios shifting between material use and use for energy are simulated. The results show that wood shifts lead to both a substitution effect (emission reduction) in industries where wood utilization is increased and a counter effect (emission increase) where wood is replaced. The two effects potentially outweigh each other partly, leading to comparatively small net effects. However, carbon sequestration in HWPs and future changes in substitution effects might lead to additional effects. To substantially contribute to climate change mitigation, alternatives other than shifting wood between material and energy value chains need to be found within the wood utilization system.</p>","PeriodicalId":16050,"journal":{"name":"Journal of Industrial Ecology","volume":"28 5","pages":"1198-1211"},"PeriodicalIF":4.9000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jiec.13530","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Ecology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jiec.13530","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Wood as a renewable material is relevant for climate change mitigation: Carbon sequestration in forests and carbon storage in harvested wood products (HWPs) contribute to carbon reduction in the atmosphere, and the substitution of carbon-intensive products with wood products can reduce greenhouse gas (GHG) emissions. Since wood is a limited resource, it must be used efficiently and sustainably. Shifting wood from one application to another might result in decreased GHG emissions due to substitution effects. However, which wood application will lead to a GHG emission reduction is currently unknown. This study investigates the effects of shifting wood between applications and the resulting substitution effects from a system perspective. A system dynamics model describes the wood utilization system of Austria, including the value chains from the forest to wood-processing industries and the substitution that takes place in these industries. These value chains are associated with the global warming potential. Seven wood utilization scenarios shifting between material use and use for energy are simulated. The results show that wood shifts lead to both a substitution effect (emission reduction) in industries where wood utilization is increased and a counter effect (emission increase) where wood is replaced. The two effects potentially outweigh each other partly, leading to comparatively small net effects. However, carbon sequestration in HWPs and future changes in substitution effects might lead to additional effects. To substantially contribute to climate change mitigation, alternatives other than shifting wood between material and energy value chains need to be found within the wood utilization system.
期刊介绍:
The Journal of Industrial Ecology addresses a series of related topics:
material and energy flows studies (''industrial metabolism'')
technological change
dematerialization and decarbonization
life cycle planning, design and assessment
design for the environment
extended producer responsibility (''product stewardship'')
eco-industrial parks (''industrial symbiosis'')
product-oriented environmental policy
eco-efficiency
Journal of Industrial Ecology is open to and encourages submissions that are interdisciplinary in approach. In addition to more formal academic papers, the journal seeks to provide a forum for continuing exchange of information and opinions through contributions from scholars, environmental managers, policymakers, advocates and others involved in environmental science, management and policy.