Potential Precursory Signals of Localized Torrential Rainfall From Geostationary Satellite and Radar Observations: A Case Study of the 2022 Seoul Flood
{"title":"Potential Precursory Signals of Localized Torrential Rainfall From Geostationary Satellite and Radar Observations: A Case Study of the 2022 Seoul Flood","authors":"Gyuyeon Kim, Yong-Sang Choi, Junho Ho","doi":"10.1007/s13143-024-00376-2","DOIUrl":null,"url":null,"abstract":"<div><p>The Korean Peninsula frequently experiences localized torrential rainfall (LTR) in the summer. However, on August 8, 2022, a peculiar LTR occurred by the continuous generation of convective clouds within a few hours, numerical weather prediction model was hard to forecast such a high intensity of LTR. This study explores the possibility of uncovering potential precursory signals using remote sensing techniques in both Geostationary Korea Multi-Purpose Satellite 2A (GK2A) and the operational RKSG (Camp Humphreys) Weather Surveillance Radar 88 Doppler (WSR-88D). Using cloud properties from GK2A, cloud top temperature showed a decrease and maintained low values below 220 K 1–1.5 h before the LTR events. However, discerning the exact onset of LTR in already mature stage clouds using only GK2A variables proved challenging. Instead, liquid water content from RKSG sharply increased before the LTR started. Our calculation of the LTR potential from a combination of GK2A and RKSG cloud properties shows a more accurate precursory signal of LTR than from GK2A cloud properties solely or RKSG either. This study highlights the synergistic benefits of combining geostationary satellite and radar observations to understand and predict early precursors of LTR events.</p></div>","PeriodicalId":8556,"journal":{"name":"Asia-Pacific Journal of Atmospheric Sciences","volume":"60 5","pages":"679 - 692"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13143-024-00376-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal of Atmospheric Sciences","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s13143-024-00376-2","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The Korean Peninsula frequently experiences localized torrential rainfall (LTR) in the summer. However, on August 8, 2022, a peculiar LTR occurred by the continuous generation of convective clouds within a few hours, numerical weather prediction model was hard to forecast such a high intensity of LTR. This study explores the possibility of uncovering potential precursory signals using remote sensing techniques in both Geostationary Korea Multi-Purpose Satellite 2A (GK2A) and the operational RKSG (Camp Humphreys) Weather Surveillance Radar 88 Doppler (WSR-88D). Using cloud properties from GK2A, cloud top temperature showed a decrease and maintained low values below 220 K 1–1.5 h before the LTR events. However, discerning the exact onset of LTR in already mature stage clouds using only GK2A variables proved challenging. Instead, liquid water content from RKSG sharply increased before the LTR started. Our calculation of the LTR potential from a combination of GK2A and RKSG cloud properties shows a more accurate precursory signal of LTR than from GK2A cloud properties solely or RKSG either. This study highlights the synergistic benefits of combining geostationary satellite and radar observations to understand and predict early precursors of LTR events.
期刊介绍:
The Asia-Pacific Journal of Atmospheric Sciences (APJAS) is an international journal of the Korean Meteorological Society (KMS), published fully in English. It has started from 2008 by succeeding the KMS'' former journal, the Journal of the Korean Meteorological Society (JKMS), which published a total of 47 volumes as of 2011, in its time-honored tradition since 1965. Since 2008, the APJAS is included in the journal list of Thomson Reuters’ SCIE (Science Citation Index Expanded) and also in SCOPUS, the Elsevier Bibliographic Database, indicating the increased awareness and quality of the journal.