Potential Precursory Signals of Localized Torrential Rainfall From Geostationary Satellite and Radar Observations: A Case Study of the 2022 Seoul Flood

IF 2.2 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Asia-Pacific Journal of Atmospheric Sciences Pub Date : 2024-07-18 DOI:10.1007/s13143-024-00376-2
Gyuyeon Kim, Yong-Sang Choi, Junho Ho
{"title":"Potential Precursory Signals of Localized Torrential Rainfall From Geostationary Satellite and Radar Observations: A Case Study of the 2022 Seoul Flood","authors":"Gyuyeon Kim,&nbsp;Yong-Sang Choi,&nbsp;Junho Ho","doi":"10.1007/s13143-024-00376-2","DOIUrl":null,"url":null,"abstract":"<div><p>The Korean Peninsula frequently experiences localized torrential rainfall (LTR) in the summer. However, on August 8, 2022, a peculiar LTR occurred by the continuous generation of convective clouds within a few hours, numerical weather prediction model was hard to forecast such a high intensity of LTR. This study explores the possibility of uncovering potential precursory signals using remote sensing techniques in both Geostationary Korea Multi-Purpose Satellite 2A (GK2A) and the operational RKSG (Camp Humphreys) Weather Surveillance Radar 88 Doppler (WSR-88D). Using cloud properties from GK2A, cloud top temperature showed a decrease and maintained low values below 220 K 1–1.5 h before the LTR events. However, discerning the exact onset of LTR in already mature stage clouds using only GK2A variables proved challenging. Instead, liquid water content from RKSG sharply increased before the LTR started. Our calculation of the LTR potential from a combination of GK2A and RKSG cloud properties shows a more accurate precursory signal of LTR than from GK2A cloud properties solely or RKSG either. This study highlights the synergistic benefits of combining geostationary satellite and radar observations to understand and predict early precursors of LTR events.</p></div>","PeriodicalId":8556,"journal":{"name":"Asia-Pacific Journal of Atmospheric Sciences","volume":"60 5","pages":"679 - 692"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13143-024-00376-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal of Atmospheric Sciences","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s13143-024-00376-2","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The Korean Peninsula frequently experiences localized torrential rainfall (LTR) in the summer. However, on August 8, 2022, a peculiar LTR occurred by the continuous generation of convective clouds within a few hours, numerical weather prediction model was hard to forecast such a high intensity of LTR. This study explores the possibility of uncovering potential precursory signals using remote sensing techniques in both Geostationary Korea Multi-Purpose Satellite 2A (GK2A) and the operational RKSG (Camp Humphreys) Weather Surveillance Radar 88 Doppler (WSR-88D). Using cloud properties from GK2A, cloud top temperature showed a decrease and maintained low values below 220 K 1–1.5 h before the LTR events. However, discerning the exact onset of LTR in already mature stage clouds using only GK2A variables proved challenging. Instead, liquid water content from RKSG sharply increased before the LTR started. Our calculation of the LTR potential from a combination of GK2A and RKSG cloud properties shows a more accurate precursory signal of LTR than from GK2A cloud properties solely or RKSG either. This study highlights the synergistic benefits of combining geostationary satellite and radar observations to understand and predict early precursors of LTR events.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从地球静止卫星和雷达观测中获取局部暴雨的潜在前兆信号:2022 年首尔洪水案例研究
朝鲜半岛在夏季经常出现局部暴雨(LTR)。然而,在 2022 年 8 月 8 日,由于在几个小时内连续产生对流云,发生了一次奇特的局地暴雨,数值天气预报模式很难预报如此高强度的局地暴雨。本研究探讨了利用遥感技术揭示韩国静止多用途卫星 2A(GK2A)和 RKSG(汉弗莱斯营)88 多普勒气象监视雷达(WSR-88D)潜在前兆信号的可能性。利用 GK2A 的云属性,云顶温度在 LTR 事件发生前 1-1.5 小时出现下降,并维持在 220 K 以下的低值。然而,仅使用 GK2A 变量来辨别已经成熟阶段的云层中 LTR 的确切开始时间证明具有挑战性。相反,RKSG 的液态水含量在 LTR 开始前急剧增加。我们根据 GK2A 和 RKSG 云特性组合计算出的 LTR 潜势显示,LTR 的前兆信号比仅根据 GK2A 云特性或 RKSG 更准确。这项研究强调了结合静止卫星和雷达观测来了解和预测 LTR 事件早期前兆的协同效益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Asia-Pacific Journal of Atmospheric Sciences
Asia-Pacific Journal of Atmospheric Sciences 地学-气象与大气科学
CiteScore
5.50
自引率
4.30%
发文量
34
审稿时长
>12 weeks
期刊介绍: The Asia-Pacific Journal of Atmospheric Sciences (APJAS) is an international journal of the Korean Meteorological Society (KMS), published fully in English. It has started from 2008 by succeeding the KMS'' former journal, the Journal of the Korean Meteorological Society (JKMS), which published a total of 47 volumes as of 2011, in its time-honored tradition since 1965. Since 2008, the APJAS is included in the journal list of Thomson Reuters’ SCIE (Science Citation Index Expanded) and also in SCOPUS, the Elsevier Bibliographic Database, indicating the increased awareness and quality of the journal.
期刊最新文献
Impact of Arctic Sea Ice Representation on Extended Medium-Range Forecasting: a Case Study of the 2016 Barents-Kara Sea Warming Event Comparative Analysis of GloSea6 Hindcasts for Two Extreme El Niño Events and Their Impact on Indo-Western North Pacific Climate Microphysical Characteristics of Snowfall in Seoul, South Korea and Their Changes with Meteorological Conditions Correction: Forecast Accuracy and Physics Sensitivity in High-Resolution Simulations of Precipitation Events in Summer 2022 by the Korean Integrated Model Comprehensive Analysis of PM2.5 Concentrations in the Seoul Metro Underground Stations: Relationships with Indoor Sources and Outdoor Air Quality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1