Fabio Saggese;Victor Croisfelt;Radosław Kotaba;Kyriakos Stylianopoulos;George C. Alexandropoulos;Petar Popovski
{"title":"On the Impact of Control Signaling in RIS-Empowered Wireless Communications","authors":"Fabio Saggese;Victor Croisfelt;Radosław Kotaba;Kyriakos Stylianopoulos;George C. Alexandropoulos;Petar Popovski","doi":"10.1109/OJCOMS.2024.3430065","DOIUrl":null,"url":null,"abstract":"The research on Reconfigurable Intelligent Surfaces (RISs) has dominantly been focused on physical-layer aspects and analyses of the achievable adaptation of the wireless propagation environment. Compared to that, questions related to system-level integration of RISs have received less attention. We address this research gap by analyzing the control signaling operations needed to integrate the RIS as a new wireless infrastructure element. As the main contribution of the paper, we build a systematic procedure for evaluating the impact of control operations on communication performance along two dimensions: i) the rate selection for the data channel (multiplexing or diversity), and ii) the allocated bandwidth of the control channels (in-band and out-of-band). Specifically, the first dimension results in two generic transmission paradigms: one focuses on optimizing RIS setting according to the propagation environment, labeled as optimization based on channel estimation (OPT-CE); the other is based on sweeping through predefined RIS phase configurations, labeled as codebook-based beam sweeping (CB-BSW). We analyze the communication performance in multiple setups built along these two dimensions. While necessarily simplified, our analysis reveals the basic trade-offs in RIS-assisted communications and the associated control operations: CB-BSW is better suited for high mobility scenarios since its operation is not conditional on performing channel estimation within the coherence time; OPT-CE performs significantly better when the channel coherence time is sufficiently long, but it requires exchanging more control data, necessitating higher control reliability and profiting more from out-of-band control channel design. Our systematic procedure can be easily adapted to include more complex systems and transmission modes.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10600711","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10600711/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The research on Reconfigurable Intelligent Surfaces (RISs) has dominantly been focused on physical-layer aspects and analyses of the achievable adaptation of the wireless propagation environment. Compared to that, questions related to system-level integration of RISs have received less attention. We address this research gap by analyzing the control signaling operations needed to integrate the RIS as a new wireless infrastructure element. As the main contribution of the paper, we build a systematic procedure for evaluating the impact of control operations on communication performance along two dimensions: i) the rate selection for the data channel (multiplexing or diversity), and ii) the allocated bandwidth of the control channels (in-band and out-of-band). Specifically, the first dimension results in two generic transmission paradigms: one focuses on optimizing RIS setting according to the propagation environment, labeled as optimization based on channel estimation (OPT-CE); the other is based on sweeping through predefined RIS phase configurations, labeled as codebook-based beam sweeping (CB-BSW). We analyze the communication performance in multiple setups built along these two dimensions. While necessarily simplified, our analysis reveals the basic trade-offs in RIS-assisted communications and the associated control operations: CB-BSW is better suited for high mobility scenarios since its operation is not conditional on performing channel estimation within the coherence time; OPT-CE performs significantly better when the channel coherence time is sufficiently long, but it requires exchanging more control data, necessitating higher control reliability and profiting more from out-of-band control channel design. Our systematic procedure can be easily adapted to include more complex systems and transmission modes.
期刊介绍:
The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023.
The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include:
Systems and network architecture, control and management
Protocols, software, and middleware
Quality of service, reliability, and security
Modulation, detection, coding, and signaling
Switching and routing
Mobile and portable communications
Terminals and other end-user devices
Networks for content distribution and distributed computing
Communications-based distributed resources control.