Computer vision-based dynamic identification of a reinforced concrete elevated water tank

IF 3.6 2区 工程技术 Q1 ENGINEERING, CIVIL Journal of Civil Structural Health Monitoring Pub Date : 2024-07-20 DOI:10.1007/s13349-024-00817-6
Stefano De Santis, Marialuigia Sangirardi, Vittorio Altomare, Pietro Meriggi, Gianmarco de Felice
{"title":"Computer vision-based dynamic identification of a reinforced concrete elevated water tank","authors":"Stefano De Santis, Marialuigia Sangirardi, Vittorio Altomare, Pietro Meriggi, Gianmarco de Felice","doi":"10.1007/s13349-024-00817-6","DOIUrl":null,"url":null,"abstract":"<p>There is a growing need for monitoring the structural health conditions of aging structures and for prioritizing maintenance works to extend their safe service life. This requires cheap, flexible, and reliable tools suitable for everyday use in engineering practice. This paper presents a computer vision-based technique combining motion magnification and statistical algorithms to calculate structural natural frequencies under environmental noise excitation, and its application to a reinforced concrete elevated water tank. Digital videos were recorded from various standpoints and post-processed by tracking in time either the variation of the grey-intensity or the motion of selected pixels. Computer vision-based outcomes were validated against accelerometric measurements and integrated to them to improve the understanding of the dynamic behaviour of the water tower, which, counterintuitively, resulted anything but trivial to predict.</p>","PeriodicalId":48582,"journal":{"name":"Journal of Civil Structural Health Monitoring","volume":"22 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Civil Structural Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13349-024-00817-6","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

There is a growing need for monitoring the structural health conditions of aging structures and for prioritizing maintenance works to extend their safe service life. This requires cheap, flexible, and reliable tools suitable for everyday use in engineering practice. This paper presents a computer vision-based technique combining motion magnification and statistical algorithms to calculate structural natural frequencies under environmental noise excitation, and its application to a reinforced concrete elevated water tank. Digital videos were recorded from various standpoints and post-processed by tracking in time either the variation of the grey-intensity or the motion of selected pixels. Computer vision-based outcomes were validated against accelerometric measurements and integrated to them to improve the understanding of the dynamic behaviour of the water tower, which, counterintuitively, resulted anything but trivial to predict.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于计算机视觉的钢筋混凝土高架水箱动态识别
人们越来越需要对老化结构的结构健康状况进行监测,并确定维护工程的优先次序,以延长其安全使用寿命。这就需要适合工程实践中日常使用的廉价、灵活和可靠的工具。本文介绍了一种基于计算机视觉的技术,该技术结合了运动放大和统计算法,用于计算环境噪声激励下的结构固有频率,并将其应用于钢筋混凝土高架水箱。从不同的角度记录了数字视频,并通过及时跟踪所选像素的灰度强度变化或运动情况进行了后期处理。基于计算机视觉的结果与加速度测量结果进行了验证,并将它们整合在一起,以加深对水塔动态行为的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Civil Structural Health Monitoring
Journal of Civil Structural Health Monitoring Engineering-Safety, Risk, Reliability and Quality
CiteScore
8.10
自引率
11.40%
发文量
105
期刊介绍: The Journal of Civil Structural Health Monitoring (JCSHM) publishes articles to advance the understanding and the application of health monitoring methods for the condition assessment and management of civil infrastructure systems. JCSHM serves as a focal point for sharing knowledge and experience in technologies impacting the discipline of Civionics and Civil Structural Health Monitoring, especially in terms of load capacity ratings and service life estimation.
期刊最新文献
Development and implementation of medium-fidelity physics-based model for hybrid digital twin-based damage identification of piping structures Innovated bridge health diagnosis model using bridge critical frequency ratio R–C–C fusion classifier for automatic damage detection of heritage building using 3D laser scanning An AIoT system for real-time monitoring and forecasting of railway temperature Environmental effects on the experimental modal parameters of masonry buildings: experiences from the Italian Seismic Observatory of Structures (OSS) network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1