Crossing the Halfway Point: Aptamer-Based, Highly Multiplexed Assay for the Assessment of the Proteome.

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-11-01 Epub Date: 2024-07-22 DOI:10.1021/acs.jproteome.4c00411
Stephan Kraemer, Daniel J Schneider, Clare Paterson, Darryl Perry, Matthew J Westacott, Yolanda Hagar, Evaldas Katilius, Sean Lynch, Theresa M Russell, Ted Johnson, David P Astling, Robert Kirk DeLisle, Jason Cleveland, Larry Gold, Daniel W Drolet, Nebojsa Janjic
{"title":"Crossing the Halfway Point: Aptamer-Based, Highly Multiplexed Assay for the Assessment of the Proteome.","authors":"Stephan Kraemer, Daniel J Schneider, Clare Paterson, Darryl Perry, Matthew J Westacott, Yolanda Hagar, Evaldas Katilius, Sean Lynch, Theresa M Russell, Ted Johnson, David P Astling, Robert Kirk DeLisle, Jason Cleveland, Larry Gold, Daniel W Drolet, Nebojsa Janjic","doi":"10.1021/acs.jproteome.4c00411","DOIUrl":null,"url":null,"abstract":"<p><p>Measuring responses in the proteome to various perturbations improves our understanding of biological systems. The value of information gained from such studies is directly proportional to the number of proteins measured. To overcome technical challenges associated with highly multiplexed measurements, we developed an affinity reagent-based method that uses aptamers with protein-like side chains along with an assay that takes advantage of their unique properties. As hybrid affinity reagents, modified aptamers are fully comparable to antibodies in terms of binding characteristics toward proteins, including epitope size, shape complementarity, affinity and specificity. Our assay combines these intrinsic binding properties with serial kinetic proofreading steps to allow highly effective partitioning of stable specific complexes from unstable nonspecific complexes. The use of these orthogonal methods to enhance specificity effectively overcomes the severe limitation to multiplexing inherent to the use of sandwich-based methods. Our assay currently measures half of the unique proteins encoded in the human genome with femtomolar sensitivity, broad dynamic range and exceptionally high reproducibility. Using machine learning to identify patterns of change, we have developed tests based on measurement of multiple proteins predictive of current health states and future disease risk to guide a holistic approach to precision medicine.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11536431/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jproteome.4c00411","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Measuring responses in the proteome to various perturbations improves our understanding of biological systems. The value of information gained from such studies is directly proportional to the number of proteins measured. To overcome technical challenges associated with highly multiplexed measurements, we developed an affinity reagent-based method that uses aptamers with protein-like side chains along with an assay that takes advantage of their unique properties. As hybrid affinity reagents, modified aptamers are fully comparable to antibodies in terms of binding characteristics toward proteins, including epitope size, shape complementarity, affinity and specificity. Our assay combines these intrinsic binding properties with serial kinetic proofreading steps to allow highly effective partitioning of stable specific complexes from unstable nonspecific complexes. The use of these orthogonal methods to enhance specificity effectively overcomes the severe limitation to multiplexing inherent to the use of sandwich-based methods. Our assay currently measures half of the unique proteins encoded in the human genome with femtomolar sensitivity, broad dynamic range and exceptionally high reproducibility. Using machine learning to identify patterns of change, we have developed tests based on measurement of multiple proteins predictive of current health states and future disease risk to guide a holistic approach to precision medicine.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
跨越中点:用于评估蛋白质组的基于色聚体的高度复用测定。
测量蛋白质组对各种扰动的反应可以增进我们对生物系统的了解。从此类研究中获得的信息价值与测量的蛋白质数量成正比。为了克服与高度复用测量相关的技术难题,我们开发了一种基于亲和试剂的方法,该方法使用具有类蛋白侧链的适配体,并利用其独特性质进行检测。作为混合亲和试剂,改性适配体在与蛋白质的结合特性方面完全可以与抗体相媲美,包括表位大小、形状互补性、亲和力和特异性。我们的检测方法将这些固有的结合特性与串行动力学校对步骤相结合,能高效地从不稳定的非特异性复合物中分离出稳定的特异性复合物。使用这些正交方法来提高特异性,有效克服了使用基于夹心的方法所固有的对多重性的严重限制。目前,我们的检测方法可以检测人类基因组中一半的独特蛋白质,具有飞摩尔灵敏度、宽动态范围和极高的重现性。利用机器学习识别变化模式,我们开发出了基于多种蛋白质测量的检测方法,可预测当前的健康状况和未来的疾病风险,从而指导精准医疗的整体方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Vitamin B12: prevention of human beings from lethal diseases and its food application. Current status and obstacles of narrowing yield gaps of four major crops. Cold shock treatment alleviates pitting in sweet cherry fruit by enhancing antioxidant enzymes activity and regulating membrane lipid metabolism. Removal of proteins and lipids affects structure, in vitro digestion and physicochemical properties of rice flour modified by heat-moisture treatment. Investigating the impact of climate variables on the organic honey yield in Turkey using XGBoost machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1