Quantitative assessment of reef foraminifera community from metabarcoding data

IF 5.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Ecology Resources Pub Date : 2024-07-23 DOI:10.1111/1755-0998.14000
Elsa B. Girard, Emilie A. Didaskalou, Andi M. A. Pratama, Carolina Rattner, Raphaël Morard, Willem Renema
{"title":"Quantitative assessment of reef foraminifera community from metabarcoding data","authors":"Elsa B. Girard,&nbsp;Emilie A. Didaskalou,&nbsp;Andi M. A. Pratama,&nbsp;Carolina Rattner,&nbsp;Raphaël Morard,&nbsp;Willem Renema","doi":"10.1111/1755-0998.14000","DOIUrl":null,"url":null,"abstract":"<p>Describing living community compositions is essential to monitor ecosystems in a rapidly changing world, but it is challenging to produce fast and accurate depiction of ecosystems due to methodological limitations. Morphological methods provide absolute abundances with limited throughput, whereas metabarcoding provides relative abundances of genes that may not correctly represent living communities from environmental DNA assessed with morphological methods. However, it has the potential to deliver fast descriptions of living communities provided that it is interpreted with validated species-specific calibrations and reference databases. Here, we developed a quantitative approach to retrieve from metabarcoding data the assemblages of living large benthic foraminifera (LBF), photosymbiotic calcifying protists, from Indonesian coral reefs that are under increasing anthropogenic pressure. To depict the diversity, we calculated taxon-specific correction factors to reduce biological biases by comparing surface area, biovolume and calcite volume, and the number of mitochondrial gene copies in seven common LBF species. To validate the approach, we compared calibrated datasets of morphological communities from mock samples with bulk reef sediment; both sample types were metabarcoded. The calibration of the data significantly improved the estimations of genus relative abundance, with a difference of ±5% on average, allowing for comparison of past morphological datasets with future molecular ones. Our results also highlight the application of our quantitative approach to support reef monitoring operations by capturing fine-scale processes, such as seasonal and pollution-driven dynamics, that require high-throughput sampling treatment.</p>","PeriodicalId":211,"journal":{"name":"Molecular Ecology Resources","volume":"24 7","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1755-0998.14000","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology Resources","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1755-0998.14000","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Describing living community compositions is essential to monitor ecosystems in a rapidly changing world, but it is challenging to produce fast and accurate depiction of ecosystems due to methodological limitations. Morphological methods provide absolute abundances with limited throughput, whereas metabarcoding provides relative abundances of genes that may not correctly represent living communities from environmental DNA assessed with morphological methods. However, it has the potential to deliver fast descriptions of living communities provided that it is interpreted with validated species-specific calibrations and reference databases. Here, we developed a quantitative approach to retrieve from metabarcoding data the assemblages of living large benthic foraminifera (LBF), photosymbiotic calcifying protists, from Indonesian coral reefs that are under increasing anthropogenic pressure. To depict the diversity, we calculated taxon-specific correction factors to reduce biological biases by comparing surface area, biovolume and calcite volume, and the number of mitochondrial gene copies in seven common LBF species. To validate the approach, we compared calibrated datasets of morphological communities from mock samples with bulk reef sediment; both sample types were metabarcoded. The calibration of the data significantly improved the estimations of genus relative abundance, with a difference of ±5% on average, allowing for comparison of past morphological datasets with future molecular ones. Our results also highlight the application of our quantitative approach to support reef monitoring operations by capturing fine-scale processes, such as seasonal and pollution-driven dynamics, that require high-throughput sampling treatment.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用代谢编码数据对珊瑚礁有孔虫群落进行定量评估。
在瞬息万变的世界中,描述生物群落组成对监测生态系统至关重要,但由于方法的局限性,要快速准确地描述生态系统具有挑战性。形态学方法提供的是绝对丰度,但通量有限,而元条码提供的是基因的相对丰度,可能无法从形态学方法评估的环境 DNA 中正确代表生物群落。然而,如果使用经过验证的物种特异性定标和参考数据库进行解释,代谢标码有可能快速描述生物群落。在此,我们开发了一种定量方法,从代谢编码数据中检索印度尼西亚珊瑚礁中活的大型底栖有孔虫(LBF)--光合共生的钙化原生生物--的集合。为了描绘多样性,我们通过比较七个常见 LBF 物种的表面积、生物体积和方解石体积以及线粒体基因拷贝数,计算了特定类群的校正因子,以减少生物偏差。为了验证这种方法,我们比较了来自模拟样本和大块珊瑚礁沉积物的形态群落校准数据集;两种样本类型都进行了代谢标记。数据校准大大提高了对物种相对丰度的估计,平均差异为±5%,从而可以将过去的形态数据集与未来的分子数据集进行比较。我们的研究结果还突显了我们的定量方法在支持珊瑚礁监测行动中的应用,即捕捉需要高通量采样处理的细尺度过程,如季节性和污染驱动的动态过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Ecology Resources
Molecular Ecology Resources 生物-进化生物学
CiteScore
15.60
自引率
5.20%
发文量
170
审稿时长
3 months
期刊介绍: Molecular Ecology Resources promotes the creation of comprehensive resources for the scientific community, encompassing computer programs, statistical and molecular advancements, and a diverse array of molecular tools. Serving as a conduit for disseminating these resources, the journal targets a broad audience of researchers in the fields of evolution, ecology, and conservation. Articles in Molecular Ecology Resources are crafted to support investigations tackling significant questions within these disciplines. In addition to original resource articles, Molecular Ecology Resources features Reviews, Opinions, and Comments relevant to the field. The journal also periodically releases Special Issues focusing on resource development within specific areas.
期刊最新文献
Development of SNP Panels from Low-Coverage Whole Genome Sequencing (lcWGS) to Support Indigenous Fisheries for Three Salmonid Species in Northern Canada. Probe Capture Enrichment Sequencing of amoA Genes Improves the Detection of Diverse Ammonia-Oxidising Archaeal and Bacterial Populations. HMicroDB: A Comprehensive Database of Herpetofaunal Microbiota With a Focus on Host Phylogeny, Physiological Traits, and Environment Factors. OGU: A Toolbox for Better Utilising Organelle Genomic Data. Correction to "Characterisation of Putative Circular Plasmids in Sponge-Associated Bacterial Communities Using a Selective Multiply-Primed Rolling Circle Amplification".
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1