Enabling Lignin Valorization Through Integrated Advances in Plant Biology and Biorefining.

IF 21.3 1区 生物学 Q1 PLANT SCIENCES Annual review of plant biology Pub Date : 2024-07-01 DOI:10.1146/annurev-arplant-062923-022602
Richard A Dixon, Allen Puente-Urbina, Gregg T Beckham, Yuriy Román-Leshkov
{"title":"Enabling Lignin Valorization Through Integrated Advances in Plant Biology and Biorefining.","authors":"Richard A Dixon, Allen Puente-Urbina, Gregg T Beckham, Yuriy Román-Leshkov","doi":"10.1146/annurev-arplant-062923-022602","DOIUrl":null,"url":null,"abstract":"<p><p>Despite lignin having long been viewed as an impediment to the processing of biomass for the production of paper, biofuels, and high-value chemicals, the valorization of lignin to fuels, chemicals, and materials is now clearly recognized as a critical element for the lignocellulosic bioeconomy. However, the intended application for lignin will likely require a preferred lignin composition and form. To that end, effective lignin valorization will require the integration of plant biology, providing optimal feedstocks, with chemical process engineering, providing efficient lignin transformations. Recent advances in our understanding of lignin biosynthesis have shown that lignin structure is extremely diverse and potentially tunable, while simultaneous developments in lignin refining have resulted in the development of several processes that are more agnostic to lignin composition. Here, we review the interface between in planta lignin design and lignin processing and discuss the advances necessary for lignin valorization to become a feature of advanced biorefining.</p>","PeriodicalId":8335,"journal":{"name":"Annual review of plant biology","volume":null,"pages":null},"PeriodicalIF":21.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of plant biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-arplant-062923-022602","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Despite lignin having long been viewed as an impediment to the processing of biomass for the production of paper, biofuels, and high-value chemicals, the valorization of lignin to fuels, chemicals, and materials is now clearly recognized as a critical element for the lignocellulosic bioeconomy. However, the intended application for lignin will likely require a preferred lignin composition and form. To that end, effective lignin valorization will require the integration of plant biology, providing optimal feedstocks, with chemical process engineering, providing efficient lignin transformations. Recent advances in our understanding of lignin biosynthesis have shown that lignin structure is extremely diverse and potentially tunable, while simultaneous developments in lignin refining have resulted in the development of several processes that are more agnostic to lignin composition. Here, we review the interface between in planta lignin design and lignin processing and discuss the advances necessary for lignin valorization to become a feature of advanced biorefining.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过植物生物学和生物炼制的综合进展实现木质素的价值化。
尽管木质素长期以来一直被视为阻碍生物质加工以生产纸张、生物燃料和高价值化学品的因素,但现在人们已清楚地认识到,将木质素转化为燃料、化学品和材料是木质纤维素生物经济的关键要素。然而,木质素的预期应用可能需要首选的木质素成分和形式。为此,有效的木质素价值化需要将提供最佳原料的植物生物学与提供高效木质素转化的化学工艺工程相结合。最近,我们对木质素生物合成的认识取得了进展,这表明木质素的结构极其多样,具有潜在的可调性,而与此同时,木质素提纯技术的发展也开发出了几种对木质素成分更不敏感的工艺。在此,我们回顾了植物木质素设计与木质素加工之间的界面,并讨论了木质素价值化成为先进生物炼制的一个特征所需的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annual review of plant biology
Annual review of plant biology 生物-植物科学
CiteScore
40.40
自引率
0.40%
发文量
29
期刊介绍: The Annual Review of Plant Biology is a peer-reviewed scientific journal published by Annual Reviews. It has been in publication since 1950 and covers significant developments in the field of plant biology, including biochemistry and biosynthesis, genetics, genomics and molecular biology, cell differentiation, tissue, organ and whole plant events, acclimation and adaptation, and methods and model organisms. The current volume of this journal has been converted from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license.
期刊最新文献
Adaptation and the Geographic Spread of Crop Species. Environmental Control of Hypocotyl Elongation. Plant Cryopreservation: Principles, Applications, and Challenges of Banking Plant Diversity at Ultralow Temperatures. Structure and Function of Auxin Transporters. Structural and Evolutionary Aspects of Plant Endocytosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1