Microbial remineralization processes during postspring-bloom with excess phosphate available in the northern Baltic Sea.

IF 3.5 3区 生物学 Q2 MICROBIOLOGY FEMS microbiology ecology Pub Date : 2024-07-12 DOI:10.1093/femsec/fiae103
Mari Vanharanta, Mariano Santoro, Cristian Villena-Alemany, Jonna Piiparinen, Kasia Piwosz, Hans-Peter Grossart, Matthias Labrenz, Kristian Spilling
{"title":"Microbial remineralization processes during postspring-bloom with excess phosphate available in the northern Baltic Sea.","authors":"Mari Vanharanta, Mariano Santoro, Cristian Villena-Alemany, Jonna Piiparinen, Kasia Piwosz, Hans-Peter Grossart, Matthias Labrenz, Kristian Spilling","doi":"10.1093/femsec/fiae103","DOIUrl":null,"url":null,"abstract":"<p><p>The phosphorus (P) concentration is increasing in parts of the Baltic Sea following the spring bloom. The fate of this excess P-pool is an open question, and here we investigate the role of microbial degradation processes in the excess P assimilation phase. During a 17-day-long mesocosm experiment in the southwest Finnish archipelago, we examined nitrogen, phosphorus, and carbon acquiring extracellular enzyme activities in three size fractions (<0.2, 0.2-3, and >3 µm), bacterial abundance, production, community composition, and its predicted metabolic functions. The mesocosms received carbon (C) and nitrogen (N) amendments individually and in combination (NC) to distinguish between heterotrophic and autotrophic processes. Alkaline phosphatase activity occurred mainly in the dissolved form and likely contributed to the excess phosphate conditions together with grazing. At the beginning of the experiment, peptidolytic and glycolytic enzymes were mostly produced by free-living bacteria. However, by the end of the experiment, the NC-treatment induced a shift in peptidolytic and glycolytic activities and degradation of phosphomonoesters toward the particle-associated fraction, likely as a consequence of higher substrate availability. This would potentially promote retention of nutrients in the surface as opposed to sedimentation, but direct sedimentation measurements are needed to verify this hypothesis.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11302951/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsec/fiae103","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The phosphorus (P) concentration is increasing in parts of the Baltic Sea following the spring bloom. The fate of this excess P-pool is an open question, and here we investigate the role of microbial degradation processes in the excess P assimilation phase. During a 17-day-long mesocosm experiment in the southwest Finnish archipelago, we examined nitrogen, phosphorus, and carbon acquiring extracellular enzyme activities in three size fractions (<0.2, 0.2-3, and >3 µm), bacterial abundance, production, community composition, and its predicted metabolic functions. The mesocosms received carbon (C) and nitrogen (N) amendments individually and in combination (NC) to distinguish between heterotrophic and autotrophic processes. Alkaline phosphatase activity occurred mainly in the dissolved form and likely contributed to the excess phosphate conditions together with grazing. At the beginning of the experiment, peptidolytic and glycolytic enzymes were mostly produced by free-living bacteria. However, by the end of the experiment, the NC-treatment induced a shift in peptidolytic and glycolytic activities and degradation of phosphomonoesters toward the particle-associated fraction, likely as a consequence of higher substrate availability. This would potentially promote retention of nutrients in the surface as opposed to sedimentation, but direct sedimentation measurements are needed to verify this hypothesis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
波罗的海北部春暖花开后磷酸盐过剩时的微生物再矿化过程。
春季水华之后,波罗的海部分海域的磷(P)浓度不断增加。在此,我们研究了微生物降解过程在过量磷同化阶段的作用。在芬兰西南部群岛进行的长达 17 天的中观实验中,我们考察了三个粒径部分(3 微米)的氮、磷和碳获取胞外酶活性、细菌丰度、产量、群落组成及其预测的代谢功能。为区分异养过程和自养过程,中置池单独或混合使用了碳(C)和氮(N)添加剂。碱性磷酸酶活性主要以溶解形式出现,可能与放牧一起造成了过量磷酸盐条件。实验开始时,多肽分解酶和糖酵解酶主要由自由生活的细菌产生。然而,到实验结束时,NC 处理导致肽分解和糖酵解活动以及磷单酯降解向颗粒相关部分转移,这可能是底物可用性提高的结果。这可能会促进营养物质在表面的保留,而不是沉积,但需要进行直接的沉积测量来验证这一假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
FEMS microbiology ecology
FEMS microbiology ecology 生物-微生物学
CiteScore
7.50
自引率
2.40%
发文量
132
审稿时长
3 months
期刊介绍: FEMS Microbiology Ecology aims to ensure efficient publication of high-quality papers that are original and provide a significant contribution to the understanding of microbial ecology. The journal contains Research Articles and MiniReviews on fundamental aspects of the ecology of microorganisms in natural soil, aquatic and atmospheric habitats, including extreme environments, and in artificial or managed environments. Research papers on pure cultures and in the areas of plant pathology and medical, food or veterinary microbiology will be published where they provide valuable generic information on microbial ecology. Papers can deal with culturable and non-culturable forms of any type of microorganism: bacteria, archaea, filamentous fungi, yeasts, protozoa, cyanobacteria, algae or viruses. In addition, the journal will publish Perspectives, Current Opinion and Controversy Articles, Commentaries and Letters to the Editor on topical issues in microbial ecology. - Application of ecological theory to microbial ecology - Interactions and signalling between microorganisms and with plants and animals - Interactions between microorganisms and their physicochemical enviornment - Microbial aspects of biogeochemical cycles and processes - Microbial community ecology - Phylogenetic and functional diversity of microbial communities - Evolutionary biology of microorganisms
期刊最新文献
Organic farming systems improve soil quality and shape microbial communities across a cotton-based crop rotation in an Indian Vertisol Geothermal ecosystems on Mt. Erebus, Antarctica, support diverse and taxonomically novel biota Transient hypoxia drives soil microbial community dynamics and biogeochemistry during human decomposition Terrestrialization of sediment bacterial assemblages when temporary rivers run dry Microbial Ecology of Nitrate-, Selenate-, Selenite-, and Sulfate-Reducing Bacteria in a H2-Driven Bioprocess
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1