Sustainability assessment of denim fabric made of PET fiber and recycled fiber from postconsumer PET bottles using LCA and LCC approach with the EDAS method

IF 3 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Integrated Environmental Assessment and Management Pub Date : 2024-07-23 DOI:10.1002/ieam.4979
Fatma Şener Fidan, Emel Kızılkaya Aydoğan, Niğmet Uzal
{"title":"Sustainability assessment of denim fabric made of PET fiber and recycled fiber from postconsumer PET bottles using LCA and LCC approach with the EDAS method","authors":"Fatma Şener Fidan,&nbsp;Emel Kızılkaya Aydoğan,&nbsp;Niğmet Uzal","doi":"10.1002/ieam.4979","DOIUrl":null,"url":null,"abstract":"<p>The textile industry is under pressure to adopt sustainable production methods because its contribution to global warming is expected to rise by 50% by 2030. One solution is to increase the use of recycled raw material. The use of recycled raw material must be considered holistically, including its environmental and economic impacts. This study examined eight scenarios for sustainable denim fabric made from recycled polyethylene terephthalate (PET) fiber, conventional PET fiber, and cotton fiber. The evaluation based on the distance from average solution (EDAS) multicriteria decision-making method was used to rank scenarios according to their environmental and economic impacts, which are assessed using life cycle assessment and life cycle costing. Allocation, a crucial part of evaluating the environmental impact of recycled products, was done using cut-off and waste value. Life cycle assessments reveal that recycled PET fiber has lower freshwater ecotoxicity and fewer eutrophication and acidification impacts. Cotton outperformed PET fibers in human toxicity. Only the cut-off method reduces potential global warming with recycled PET. These findings indicated that recycled raw-material life cycle assessment requires allocation. Life cycle cost analysis revealed that conventional PET is less economically damaging than cotton and recycled PET. The scenarios were ranked by environmental and economic impacts using EDAS. This ranking demonstrated that sustainable denim fabric production must consider both economic and environmental impacts. <i>Integr Environ Assess Manag</i> 2024;20:2347–2365. © 2024 The Author(s). <i>Integrated Environmental Assessment and Management</i> published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology &amp; Chemistry (SETAC).</p>","PeriodicalId":13557,"journal":{"name":"Integrated Environmental Assessment and Management","volume":"20 6","pages":"2347-2365"},"PeriodicalIF":3.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ieam.4979","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrated Environmental Assessment and Management","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ieam.4979","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The textile industry is under pressure to adopt sustainable production methods because its contribution to global warming is expected to rise by 50% by 2030. One solution is to increase the use of recycled raw material. The use of recycled raw material must be considered holistically, including its environmental and economic impacts. This study examined eight scenarios for sustainable denim fabric made from recycled polyethylene terephthalate (PET) fiber, conventional PET fiber, and cotton fiber. The evaluation based on the distance from average solution (EDAS) multicriteria decision-making method was used to rank scenarios according to their environmental and economic impacts, which are assessed using life cycle assessment and life cycle costing. Allocation, a crucial part of evaluating the environmental impact of recycled products, was done using cut-off and waste value. Life cycle assessments reveal that recycled PET fiber has lower freshwater ecotoxicity and fewer eutrophication and acidification impacts. Cotton outperformed PET fibers in human toxicity. Only the cut-off method reduces potential global warming with recycled PET. These findings indicated that recycled raw-material life cycle assessment requires allocation. Life cycle cost analysis revealed that conventional PET is less economically damaging than cotton and recycled PET. The scenarios were ranked by environmental and economic impacts using EDAS. This ranking demonstrated that sustainable denim fabric production must consider both economic and environmental impacts. Integr Environ Assess Manag 2024;20:2347–2365. © 2024 The Author(s). Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用生命周期评估(LCA)和生命周期成本计算(LCC)方法以及 EDAS 方法,对 PET 纤维和消费后 PET 瓶回收纤维制成的牛仔面料进行可持续性评估。
纺织业面临着采用可持续生产方法的压力,因为预计到 2030 年,纺织业对全球变暖的影响将增加 50%。解决方案之一是增加使用回收原材料。必须全面考虑再生原材料的使用,包括其对环境和经济的影响。本研究考察了由回收的聚对苯二甲酸乙二酯(PET)纤维、传统 PET 纤维和棉纤维制成的可持续牛仔面料的八种方案。采用基于平均解距离(EDAS)的多标准决策评价方法,根据各方案对环境和经济的影响对其进行排序,并使用生命周期评估和生命周期成本计算对其进行评估。分配是评估回收产品对环境影响的关键部分,采用截断值和废物值进行分配。生命周期评估显示,再生 PET 纤维的淡水生态毒性较低,富营养化和酸化影响较小。棉花在人体毒性方面优于 PET 纤维。只有截断法减少了回收 PET 潜在的全球变暖。这些研究结果表明,再生原材料的生命周期评估需要进行分配。生命周期成本分析表明,传统 PET 的经济损失小于棉花和再生 PET。使用 EDAS 对各种方案的环境和经济影响进行了排序。排序结果表明,可持续牛仔面料生产必须同时考虑经济和环境影响。Integr Environ Assess Manag 2024;00:1-19。© 2024 作者。综合环境评估与管理》由 Wiley Periodicals LLC 代表环境毒理学与化学学会 (SETAC) 出版。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Integrated Environmental Assessment and Management
Integrated Environmental Assessment and Management ENVIRONMENTAL SCIENCESTOXICOLOGY&nbs-TOXICOLOGY
CiteScore
5.90
自引率
6.50%
发文量
156
期刊介绍: Integrated Environmental Assessment and Management (IEAM) publishes the science underpinning environmental decision making and problem solving. Papers submitted to IEAM must link science and technical innovations to vexing regional or global environmental issues in one or more of the following core areas: Science-informed regulation, policy, and decision making Health and ecological risk and impact assessment Restoration and management of damaged ecosystems Sustaining ecosystems Managing large-scale environmental change Papers published in these broad fields of study are connected by an array of interdisciplinary engineering, management, and scientific themes, which collectively reflect the interconnectedness of the scientific, social, and environmental challenges facing our modern global society: Methods for environmental quality assessment; forecasting across a number of ecosystem uses and challenges (systems-based, cost-benefit, ecosystem services, etc.); measuring or predicting ecosystem change and adaptation Approaches that connect policy and management tools; harmonize national and international environmental regulation; merge human well-being with ecological management; develop and sustain the function of ecosystems; conceptualize, model and apply concepts of spatial and regional sustainability Assessment and management frameworks that incorporate conservation, life cycle, restoration, and sustainability; considerations for climate-induced adaptation, change and consequences, and vulnerability Environmental management applications using risk-based approaches; considerations for protecting and fostering biodiversity, as well as enhancement or protection of ecosystem services and resiliency.
期刊最新文献
Addressing Water Scarcity to Achieve Climate Resilience and Human Health. Application of artificial intelligence for nutrient estimation in surface water bodies of basins with intensive agriculture. Assessing bioaccumulation with biomagnification factors from dietary bioaccumulation tests. Metal-rich lacustrine sediments from legacy mining perpetuate copper exposure to aquatic-riparian food webs. Rhamnolipid: nature-based solution for the removal of microplastics from the aquatic environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1