Predicting surface-energy anisotropy of metals with geometric properties of surfaces and atoms.

IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Journal of Physics: Condensed Matter Pub Date : 2024-07-31 DOI:10.1088/1361-648X/ad665d
Xin Li, Hao Wu, Wang Gao
{"title":"Predicting surface-energy anisotropy of metals with geometric properties of surfaces and atoms.","authors":"Xin Li, Hao Wu, Wang Gao","doi":"10.1088/1361-648X/ad665d","DOIUrl":null,"url":null,"abstract":"<p><p>Surface-energy anisotropy of metals is crucial for the stability and structure, however, its determining factors and structure-property relationship are still elusive. Herein, we identify three key factors for predicting surface-energy anisotropy of pure metals and alloys: the surface-atom density, coordination numbers and atomic radius. We find that the coupling rules of surface geometric determinants, which determining surface-energy anisotropy of face-centred-cubic (FCC), hexagonal-close-packed (HCP) and body-centred-cubic (BCC) metals, are essentially controlled by the crystal structures instead of chemical bonds, alloying or electronic structures. Furthermore, BCC metals exhibit material-dependent surface-energy anisotropy depending on the atomic radius, unlike FCC and HCP metals. The underlying mechanism can be understood from the bonding properties in the framework of the tight-binding model. Our scheme provides not only a new physical picture of surface stability but also a useful tool for material design.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/ad665d","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Surface-energy anisotropy of metals is crucial for the stability and structure, however, its determining factors and structure-property relationship are still elusive. Herein, we identify three key factors for predicting surface-energy anisotropy of pure metals and alloys: the surface-atom density, coordination numbers and atomic radius. We find that the coupling rules of surface geometric determinants, which determining surface-energy anisotropy of face-centred-cubic (FCC), hexagonal-close-packed (HCP) and body-centred-cubic (BCC) metals, are essentially controlled by the crystal structures instead of chemical bonds, alloying or electronic structures. Furthermore, BCC metals exhibit material-dependent surface-energy anisotropy depending on the atomic radius, unlike FCC and HCP metals. The underlying mechanism can be understood from the bonding properties in the framework of the tight-binding model. Our scheme provides not only a new physical picture of surface stability but also a useful tool for material design.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用表面和原子的几何特性预测金属的表面能量各向异性
金属的表面能各向异性对其稳定性和结构至关重要,但其决定因素和结构-性能关系仍然难以捉摸。在此,我们确定了预测纯金属和合金表面能各向异性的三个关键因素:表面原子密度、配位数和原子半径。我们发现,决定面心立方(FCC)、六方紧密堆积(HCP)和体心立方(BCC)金属表面能量各向异性的表面几何决定因素的耦合规则,基本上是由晶体结构而不是化学键、合金或电子结构控制的。此外,与 FCC 和 HCP 金属不同,BCC 金属根据原子半径表现出与材料相关的表面能各向异性。我们可以在紧密结合模型的框架内从成键特性中理解其基本机制。我们的方案不仅为表面稳定性提供了新的物理图景,也为材料设计提供了有用的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Physics: Condensed Matter
Journal of Physics: Condensed Matter 物理-物理:凝聚态物理
CiteScore
5.30
自引率
7.40%
发文量
1288
审稿时长
2.1 months
期刊介绍: Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.
期刊最新文献
A multi-orbital Hund's rules-based ionic Hamiltonian for transition metal atoms: high-order equation of motion method approach and Kondo resonances. Weak antilocalization in the topological semimetal candidate YbAuSb. Magnetism of pseudospin-1/2 pyrochlore antiferromagnet Na3Co(CO3)2Cl. Anti-matching effect in a two dimensional driven vortex lattice in the presence of periodic pinning. Low-temperature magnetic properties of theS= 1/2 kagomé antiferromagnet YCo3(OH)6.55Br2.45.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1